Электромеханическое сопряжение. Электромеханическое сопряжение в мышцах

Связь между возбуждением и сокращением мышечного волокна описана А.Хаксли (1959). Осуществляется при помощи системы поперечных трубочек поверхностной мембраны (Т-системы) и внутриволоконного саркоплазматического ретикулума. Деполяризация, вызываемая потенциалом действия, распространяется на Т - систему и стимулирует освобождение ионов кальция из полостей ретикулума. Взаимодействие ионов кальция с регуляторным белком тропонином С приводит к активации системы сократительных белков актина и миозина. Механизм генерации потенциала действия принципиально не отличается от этого процесса в нейроне. Скорость его распространения по мембране мышечного волокна 3 - 5 м/c.

5. Режимы и виды сокращения мышц

Режимы сокращения мышцы: изотонический (когда мышца укорачивается при неизменном внутреннем напряжении, например, при нулевой массе поднимаемого груза) и изометрический (при этом режиме мышца не укорачивается, а лишь развивает внутреннее напряжение, что бывает при нагрузке неподъёмным грузом). Ауксотонический режим - при сокращении мышцы с нагрузкой вначале в мышце возрастает напряжение без укорочения (изометрический режим), затем, когда напряжение преодолевает массу поднимаемого груза, укорочение мышцы происходит без дальнейшего роста напряжения (изотонический режим).

Различают виды сокращений: одиночное и тетаническое. Одиночное сокращение возникает при действии на мышцу одиночного нервного импульса или однократного толчка тока. В миоплазме мышцы происходит кратковременный подъём концентрации кальция, сопровождаемый кратковременной работой - тягой миозиновых мостиков, сменяющейся покоем. В изометрическом режиме одиночное напряжение начинается через 2 мс после развития потенциала действия, причём напряжению предшествует кратковременное и незначительное латентное расслабление.

Тетанус - это сложное сокращение, возникающее при стимуляции с частотой выше, чем длительность одиночного мышечного сокращения. Тетанус бывает зубчатый, если мышца совершает незначительные колебания на высоте амплитуды сокращения, и гладкий - при постоянном во времени сокращении. При относительно малой частоте раздражений возникает зубчатый тетанус, при большой частоте - гладкий тетанус. Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

В естественных условиях мышечные волокна работают в режиме одиночного сокращения только тогда, когда длительность интервала между разрядами мотонейронов равна или превышает длительность одиночного сокращения иннервируемых данным мотонейроном мышечных волокон. В режиме одиночного сокращения мышца способна работать длительное время без утомления, совершая при этом минимальную работу. При увеличении частоты разрядов развивается тетаническое сокращение. При зубчатом тетанусе происходит непрерывное нарастание силы сокращения и выполняемой работы. Во время гладкого тетануса мышечное напряжение не изменяется, а поддерживается на достигнутом уровне. В таком режиме мышца человека работает при развитии максимальных изометрических усилий. Работа мышцы (А) измеряется произведением массы груза (Р) и расстояния (H), на которое этот груз перемещается.

Работа может быть динамической (преобладают изотонические режимы сокращения) или статической. Она может быть преодолевающей и уступающей.

Расслабление мышцы.

Восстановление потенциала покоя мембраны прекращает поступление из саркоплазматического ретикулума ионов кальция и дальнейший сократительный процесс. Кальций в миоплазме активирует Са-АТФ-азу, кальциевый насос осуществляет активный перенос этого иона в саркоплазматический ретикулум. Возврат мышцы в исходное, растянутое положение определяется массой костей скелета, связанных с данными мышцами и создающими растягивающее усилие после прекращения процесса сокращения. Вторым моментом является упругость мышцы, которая преодолевается в момент сокращения. Структурной основой упругости мышцы являются:

Поперечные мостики.

Участки прикрепления концов миофибрилл к сухожильным элементам мышечного волокна.

Наружные соединительнотканные элементы мышцы и её волокна.

Места прикрепления мышц к костям.

Продольная система саркоплазматического ретикулума.

Сарколемма мышечного волокна.

Капиллярная сосудистая сеть мышцы.

Электромеханическое сопряжение - это последовательность процессов, в результате которых потенциал действия плазматической мембраны мышечного волокна приводит к запуску цикла поперечных мостиков . Плазматическая мембрана скелетных мышц электрически возбудима и способна генерировать распространяющийся потенциал действия посредством механизма, аналогичного тому, который действует в нервных клетках (см. " Проведение возбуждения между клетками ". Потенциал действия в волокне скелетной мышцы длится 1-2 мс и заканчивается раньше, чем появятся какие-либо признаки механической активности ( рис. 30.14). Начавшаяся механическая активность может продолжаться более 100 мс. Электрическая активность плазматической мембраны не оказывает прямого влияния на сократительные белки, а вызывает повышение цитоплазматической концентрации ионов Са2+, которые продолжают активировать сократительный аппарат и после прекращения электрического процесса.

В состоянии покоя в мышечном волокне концентрация свободного ионизированного Са2+ в цитоплазме вокруг толстых и тонких филаментов очень низка, около одной десятимиллионной доли моля/л. При такой низкой концентрации ионы Са2+ занимают очень небольшое количество участков связывания на молекулах тропонина, поэтому тропомиозин блокирует активность поперечных мостиков . После потенциала действия концентрация ионов Са2+ в цитоплазме быстро возрастает, и они связываются с тропонином , устраняя блокирующий эффект тропомиозина и инициируя цикл поперечных мостиков. Источником поступления Са2+ в цитоплазму является саркоплазматический ретикулум мышечного волокна.

Саркоплазматический ретикулум мышц гомологичен эндоплазматическому ретикулуму других клеток. Он располагается вокруг каждой миофибриллы наподобие "рваного рукава", сегментами которого окружены A-диски и I-диски ( рис. 30.15). Концевые части каждого сегмента расширяются в виде так называемых латеральных цистерн , соединенных друг с другом серией более тонких трубок. В латеральных цистернах депонируется Са2+; после возбуждения плазматической мембраны он высвобождается.

Отдельную систему составляют поперечные трубочки (T-трубочки) , которые пересекают мышечное волокно на границе A-дисков и I-дисков , проходят между латеральными цистернами двух смежных саркомеров и выходят на поверхность волокна, составляя единое целое с плазматической мембраной. Просвет Т-трубочки заполнен внеклеточной жидкостью, окружающей мышечное волокно. Ее мембрана, как и плазматическая, способна к проведению потенциала действия. Возникнув в плазматической мембране, потенциал действия быстро распространяется по поверхности волокна и мембране Т-трубочек в глубь клетки. Достигнув области Т-трубочек, прилегающих к латеральным цистернам, потенциал действия активирует потенциалзависимые "воротные" белки их мембраны, физически или химически сопряженные с кальциевыми каналами мембраны латеральных цистерн. Таким образом, деполяризация мембраны Т-трубочек. обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных цистерн, содержащих Са2+ в высокой концентрации, и ионы Са2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са2+ обычно бывает достаточным для активации всех поперечных мостиков мышечного волокна.

Процесс сокращения продолжается, пока ионы Са2+ связаны с тропонином , т.е. до тех пор, пока их концентрация в цитоплазме не вернется к исходному низкому значению. Мембрана саркоплазматического ретикулума содержит Са2+-АТФазу - интегральный белок, осуществляющий активный транспорт Са2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Са2+ высвобождается из ретикулума в результате распространения потенциала действия по Т-трубочкам ; для его возвращения в ретикулум нужно гораздо больше времени, чем для выхода. Поэтому повышенная концентрация Са2+ в цитоплазме сохраняется в течение некоторого времени и сокращение мышечного волокна продолжается после завершения потенциала действия.

Подведем итог. Сокращение обусловлено высвобождением ионов Са2+, хранящихся в саркоплазматическом ретикулуме; когда Са2+ поступает обратно в ретикулум, сокращение заканчивается и начинается расслабление ( рис. 30.16). Источником энергии для кальциевого насоса служит АТФ - это одна из трех его главных функций в мышечном сокращении (

Подробности

Особенностью электромеханического сопряжения в сердечной мышце является то, что при возбуждении миокарда ионы кальция поступают в саркоплазму не только из цистерн саркоплазматического ретикулума, но также из Т-трубоче к. Без этого дополнительного источника ионов кальция сокращение сердечной мышцы было бы недостаточно сильным. Дело в том, что в отличие от скелетной мышцы саркоплазматический ретикулум в кардиомиоцитах развит слабее .

Что касается системы Т-трубочек, то они являются мощным депо кальция . Их диаметр в 5 раз, а объем жидкости в них в 25 раз больше, чем в волокнах скелетных мышц. Кроме того, в Т-трубочках имеется большое количество мукополисахаридов , несущих на поверхности отрицательный заряд. Связываясь с ионами кальция, они создают значительный запас этих ионов, способных немедленно диффундировать в саркоплазму при возбуждении.

Сила сокращения кардиомиоцитов зависит от внеклеточного кальция, а скелетных мышц - нет.

В отличие от скелетных мышц сила сокращения миокарда в значительной степени зависит от концентрации кальция во внеклеточной жидкости . Дело в том, что хорошо развитая система Т-трубочек, открываясь в окружающее внеклеточное пространство, заполнена внеклеточной (интерстициальной) жидкостью с высоким содержанием кальция. Таким образом, внеклеточная жидкость проникает глубоко внутрь волокон по системе Т-трубочек и служит необходимым источником ионов кальция для развития мышечного сокращения.

Сила сокращения скелетных мышц практически не зависит от изменений концентрации кальция во внеклеточной жидкости . Сокращение скелетных мышц полностью обеспечивается ионами кальция, поступающими в саркоплазму из цистерн саркоплазматического ретикулума, т.е. из внутриклеточных источников.

В конце фазы плато потенциала действия вход ионов кальция в кардиомиоцит прекращается. Из саркоплазмы ионы кальция быстро удаляются как обратно в саркоплазматический ретикулум, так и во внеклеточную жидкость Т-трубочек. В результате цикл сокращения в миокарде завершается вплоть до поступления нового потенциала действия.

Длительность сокращения скелетных и сердечных мышц.

Сокращение сердечной мышцы начинается через несколько миллисекунд после начала потенциала действия и заканчивается через несколько миллисекунд после завершения потенциала действия. Таким образом, длительность сокращения миокарда зависит от длительности потенциала действия , включая фазу плато, и составляет 0,2 сек в миокарде предсердий и 0,3 сек в миокарде желудочков.

Рианодиновый рецептор (RyR).

Рианодиновый рецептор (RyR) в мышечных клетках выполняет важнейшую функцию сопряжения потенциала действия с мышечным сокращением . В скелетных мышцах рианодиновые рецепторы активируются посредством специализированного механизма прямого электромеханического сопряжения , а сокращение сердечной мышцы запускается по механизму Са2+-индуцированного выброса Са2+ .

Обнаружено три изоформы рианодинового рецептора: RyR1 , RyR2 , RyR3 , кодируемые тремя разными генами. RyR имеют несколько мест регуляции, которая осуществляется Са2+ , АТР, кальмодулином (КМ) , иммунофилином и кальцинеурином. Рецептор фосфорилируется CaKMPK II (CaKM-зависимая протеинкиназа II) и дефосфорилируется кальцинеурином. В скелетных мышцах RyR1 расположен на цистернах СР примыкающих к цитоплазматической мембране и его длинный цитоплазматический "хвост" (так называемый "foot"-регион, или "ножка") соприкасается с дигидроперидиновым рецептором (DHPR) на плазмалемме . Однако, непосредственное функциональное взаимодействия между RyR и DHPR на молекулярном уровне еще не показано. Обсуждается вопрос об участии третьего белка в образовании контакта между RyR и DHPR.

Согласно разным структурным моделям С-конец RyR содержит от до 10 (12) трансмембранных доменов, формирующих мембранную пору. Активность RyR модулируется растительным алкалоидом рианодином из коры Ryania speciosa, что и определило его название. На каналы изолированные из мышц позвоночных и ракообразных рианодин в концентрациях от нМ до мкМ оказывает активирующее влияние, тогда как в концентрациях выше 100 мкМ он вызывает полное закрывание каналов. Было постулировано, что рианодин связывается с каналом в открытом состоянии. Физиологическим активатором рианодинового рецептора, в частности его сердечной изоформы и рианодин-чувствительного Ca2+- канала яйцеклеток морских ежей является циклическая АДР-рибоза (сADPR) - наиболее мощный из известных Са2+-высвобождающих агентов. Полумаксимальное высвобождение Са2+ в гомогенатах яйцеклеток морских ежей наблюдается при наномолярных концентрациях сADPR, что на порядок ниже, чем для IP3. Крутая зависимость активности RR от концентрации Са2+ (см рис. 6.8) позволяет говорить о механизме выброса Са2+ в присутствии cADPR как о Са2+-индуцированном выходе Са2+.

CaКM-зависимая протеинкиназа фосфорилирует все три изоформы рецептора, что приводит к его активации . Показано, что PKA и GMP-зависимая протеинкиназа также способны фосфорилировать этот же сайт. Фосфорилирование этого сайта cAMP-зависимой протеинкиназой, в частности при стимуляции b-адренорецептора, активирует сердечную изоформу RyR.
Генерация Са2+-сигнала с участием cADPR, в настоящее время показана для ряда тканей и клеток, для млекопитающих и растений. У млекопитающих активация секреции везикул ацинарными клетками поджелудочной железы и секреции инсулина b-клетками весьма чувствительны к подъему Са2+, вызванному именно этим циклическим нуклеотидом.

Краткое резюме по рианодиновым рецепторам:

Рианодиновые рецепторы(RyR) представляют собой особый тип хемоактивируемых Са2+каналов, имеющихся в мембране СР. Для млекопитающих известны 3 изоформы:RyR1,RyR2,RyR3. Нокаут гена:RyR1иRyR2–смерть в период эмбрионал разв-я.RyR3–жизнеспос-ые живот; значит-ое сниж-е CICR .Для скел м-ц:бол-во RyR1 спарены с DHPR. Более значит-ым оказыв мех-м DICR.Для сердеч м-цы:тока один из 5-10 RyR2 спарен с DHPR. Большее знач играет мех-зм CICR. Работы Фабиато: Суть: Налич отриц-ой обр-ой св, представлен Ca2+-зависимой инактив-ей RyR. Мех-м: Активацион сайт хар-ся выс акт-ью и низк сродством. Инактив-ый сайт хар-тся низкой акт-ью и выс сродством. Повыш-е конц-ции Ca2+ прив-ит к повыш-ю сродства к агонистам у RyR. Опыты с трипсином подтверд сущест-ие как полож-ой так и отриц-ой регул. Мех-мы взаимод-я: Прямое,с участками внутрен доменов RyR.Ч/з белки-посредники. Действие на наруж участки RyR. В сост RyR входит от 80 до 100 остат цистеина, мн из кот м.б.подвергнуты модиф-ции. Дей-е ок-ей: Подав-е функц-ой акт-ти. Сниж-е способ-ти к регул другими факторами. Модификация с пом NO:В мал конц-ях–повыш актив-ть RyR. В выс-их–понижает акт-ть RyR.

При активации гладкомышечной клетки ионы кальция могут входить в через дигидропиридин-чувствительные, потенциал-зависимые кальциевые каналы L- типа, которые располагаются в кавеолах – инвагинациях плазматической мембраны, контактирующих с саркоплазматическим ретикулумом. Кальциевые потенциал-зависимые каналы L- типа также активируются в ответ на растяжение мембраны, и результатом является деполяризация мембраны. Концентрация Са 2+ во внеклеточной жидкости приблизительно в 10 000 раз больше, чем в саркоплазме. Поэтому ионы Са 2+ довольно быстро входят в клетку через Са 2+ каналы. Небольшие размеры гладкомышечной клетки создают благоприятные условия для быстрой диффузии ионов Са 2+ к внутриклеточным участкам связывания. В дальнейшем ионы Са 2+ инициируют выход Са 2+ из депо – саркоплазматического ретикулума и активацию процесса сокращения гладкой мышцы. Для некоторых гладкомышечных клеток, например, составляющих мышечную стенку артериол, вход ионов Са 2+ через потенциал-зависимые Са 2+ -каналы определяет уровень внутриклеточной концентрации ионов Са 2+ . Для других типов гладких мышц этот путь повышения концентрации ионов Са 2+ в саркоплазме не существенен. Потенциал действия может также быть вызван активацией быстрых потенцал-зависимых Na + -каналов, например vas deferens мыши .

Са 2+ -вызванное освобождение Са 2+ из саркоплазматического ретикулума играет основную роль в электромеханическом сопряжении и в сердечной мышце, где наблюдается большое количество L–типа Са 2+ каналов, тесно прилегающих к Са 2+ каналам саркоплазматического ретикулума. Ионы Са 2+ из саркоплазматического ретикулума выходят через ионные каналы, которые активируются рианодиновыми рецепторами . Впервые рианодиновые рецепторы были обнаружены в скелетной мышце и название свое получили от названия антагониста, алкалоида растительного происхождения, рианодина. Причем, в низких концентрациях рианодин способен активировать Са 2+ канал рианодинового рецептора, а в высоких – вызывает его блокаду .

В гладкой мышце взаимоотношения между плазматической мембраной и саркоплазматическим ретикулумом не настолько четко организованы, как в скелетной и в сердечной мышце. Однако в гладкой мышце имеются электронно-плотные участки (мостики), размером около 20 нм. В этих участках ко-локализованы дигидропиридиновые рецепторы плазматической мембраны и рианодиновые рецепторы саркоплазматического ретикулума. Были идентифицированы и клонированы три различных типа рианодиновых рецепторов: тип RyR1 обнаружен в скелетных мышцах, тип RyR2 – в мышцах сердца. Считается, что в гладкой мышце присутствует RyR3 изоформа рианодиновых рецепторов . Рецептор к рианодину представляет из себя тетрамерный комплекс, состоящий из мономеров (трансмембранных полипептидов) с молекулярной массой 500 кДа. Рианодиновые рецепторы гладких мышц активируются микромолярной внутриклеточной концентрацией ионов Са 2+ и кофеином. Ингибируются рианодиновые рецепторы ионами Mg 2+ и рутением красным. При взаимодействии с ионами Са 2+ комплекс рианодинового рецептора образует кальций-активируемый Са 2+ канал, через который ионы Са 2+ выходят из саркоплазматического ретикулума в саркоплазму. Проводимость ионного канала рианодинового рецептора для ионов Са 2+ в гладкомышечной клетке сопоставима с проводимостью ионного канала рианодинового рецептора в скелетной и сердечной мышце. Однако, плотность рианодиновых рецепторов в гладкой мышце значительно ниже плотности в других мышечных тканях .



Выход ионов Са 2+ из саркоплазматического ретикулума в саркоплазму носит локальный характер. Это местное и довольно значительное повышение концентрации ионов Са 2+ называется Са 2+ -спарк. Вход ионов Са 2+ через Са 2+ -каналы плазматической мембраны и Са 2+ -спарки повышают общую «глобальную» внутриклеточную концентрацию ионов Са 2+ , что инициирует процесс сокращения гладкой мышцы. Это – электромеханический путь сопряжения процессов возбуждения и сокращения .

Строение скелетных мышц.
Каждая мышца состоит из параллельных пучков поперечно-полосатых мышечных волокон. Каждый пучок одет оболочкой. И вся мышца снаружи покрыта тонкой соединительнотканной оболочкой, защищающей мышечную ткань. Целостное мышечное волокно сокращается в результате стимуляции моторным нервом.
Каждое мышечное волокно также имеет снаружи тонкую оболочку, а внутри него находятся многочисленные тонкие сократительные нити - миофибриллы и большое количество ядер. Миофибриллы, с свою очередь, состоят из тончайших нитей двух типов - толстых (белковые молекулы миозина) и тонких (белок актина). Так как они образованы различными видами белка, под микроскопом видны чередующиеся темные и светлые полосы. Отсюда и название скелетной мышечной ткани - поперечно-полосатая.
У человека скелетные мышцы состоят из волокон двух типов - красных и белых. Они различаются составом и количеством миофибрилл, а главное - особенностями сокращения. Так называемые белые мышечные волокна сокращаются быстро, но быстро и устают; красные волокна сокращаются медленнее, но могут оставаться в сокращенном состоянии долго. В зависимости от функции мышц в них преобладают те или иные типы волокон.
Мышцы выполняют большую работу, поэтому они богаты кровеносными сосудами, по которым кровь снабжает их кислородом, питательными веществами, выносит продукты обмена веществ.
Мышцы крепятся к костям с помощью нерастяжимых сухожилий, которые срастаются с надкостницей. Обычно мышцы одним концом крепятся выше, а другим ниже сустава. При таком креплении сокращение мышц приводит в движение кости в суставах.Типичная скелетная мышца прикреплена как минимум к двум костям. Скелетные мышцы обеспечивают произвольные движения.

К скелетной мышце подходят нервы, которые несут сигналы от центральной нервной системы, вызывающие мышечное сокращение; по ним также обратно в нервную систему передается сенсорная информация о степени растяжения или сокращения мышцы.
Скелетные мышцы редко бывают полностью расслаблены; даже если движения в суставе нет, в мышце все равно поддерживается состояние слабого сокращения (мышечный тонус).
«Теория скользящих нитей» - концепция, объясняющая механизм сокращения миофибриллы. Разработана независимо друг от друга Хью Эзмором Хаксли и Сэром Андру Филдингом Хаксли
Согласно данной концепции, укорочение саркомера (части миофибриллы) во время сокращения происходит благодаря активному скольжению актиновых нитей относительно миозиновых нитей.между актином и миозином образуются так называемые поперечные мостики. Боковые мостики миозина цепляются за активные центры актина и сдвигают актин - происходит сокращение. Далее мостик отцепляется и прицепляется к следующему центру, передвигаясь дальше.При сокращении мышца укорачивается, но мы не чувствуем напряжение - мышца расслаблена - это изотоническое сокращение. Постоянная длина, но меняется степень напряжения в мышце - изометрическое сокращение. Напряжение мышцы с изменением её длины - эксцентрическое сокращение.
Электромеханической сопряжение - переход электрического движения в механическое, в результате чего происходит сокращение мышц.
Нервно-мышечный синапс - эффекторное нервное окончание на скелетном мышечном волокне.



При произвольной внутренней команде сокращение мышцы человека начинается примерно через 0.05 с (50 мс). За это время моторная команда передается от коры больших полушарий к мотонейронам спинного мозга и по двигательным волокнам к мышце. Подойдя к мышце, процесс возбуждения должен с помощью медиатора преодолеть нервно-мышечный синапс, что занимает примерно 0.5 мс. Медиатором здесь является ацетилхолин, который содержится в синоптических пузырьках в пресинаптической части синапса. Нервный импульс вызывает перемещение синаптических пузырьков к пресинаптической мембране, их опорожнение и выход медиатора в синаптическую щель Действие ацетил-холина на постсинаптическую мембрану чрезвычайно кратковременно, после чего он разрушаетсся ацетилхолинэстеразой на уксусную кислоту и холин. По мере расходо-нания запасы ацетил-холина постоянно пополняются путем его синтезирования в пресинаптической мембране. Однако, при очень частой и длительной импульсации мотонейрона расход ацетилхолини превышает его пополнение, а также снижается чувствительность постсинаптической мембраны к его действию, В результате чего нарушается проведение возбуждения через нервно-мышечный синапс.
Выделившийся в синаптическую щель медиатор прикрепляется к рецепторам постсинаптической мембраны и вызывает в ней явления деполяризации. Небольшое подпороговое раздражение вызывает лишь местное возбуждение или небольшой амплитуды потенциал концевой пластинки (ПКП).
При достаточной частоте нервных импульсов ПКП достигает порогового значения и на мышечной мембране развивается мышечный потенциал действия. Он распространяется вдоль по поверхности мышечного волокна и заходит в поперечные трубочки внутрь волокна. Повышая проницаемость клеточных мембран, потенциал действия вызывает выход из цистерн и трубочек саркоплаэматического ретикулума ионов Са2+, которые проникают в миофибриллы, к центрам связывания этих ионов на молекулах актина.
Под влиянием Са2+ длинные молекулы тропомиозина проворачиваются вдоль оси и скрываются в желобки между сферическими молекулами актина, открывая участки прикрепления головок миозина к актину. Тем самым между актином и миозином образуются поперечные мостики. При этом головки миозина совершают гребковые движения, обеспечивая скольжение нитей актина вдоль нитей миозина с обоих концов саркомера к его центру, т.е. механическую реакцию мышечного волокна.
Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са2+. Такой процесс происходит в результате активации в этот момент молекул миозина. Миозин приобретает свойства фермента АТФ-азы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению имеющихся мостиков и образованию в присутствии Са2+новых мостиков на следующем участке актиновой нити. В результате повторения подобных процессов многократного образования и распада мостиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом. Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала действия в поперечных трубочках, а максимальное напряжение мышечного волокна - через 20 мс. Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромеханической связью (или электромеханическим сопряжением). В результате сокращения мышечного волокна актин и миозин более равномерно распределяются внутри саркомера, и исчезает видимая под микроскопом поперечная исчерченность мышцы. Расслабление мышечного волокна связано с работой особого механизма - «кальциевого насоса», который обеспечивает откачку ионов Са2+ из миофибрилл обратно в трубочки саркоплазматического ретикулума. На это также тратится энергия АТФ.