Искусственные мышцы своими руками. Сделай сам: синтетические мышцы из лески и нитки

Большие мускулы - результат долгих лет усердных тренировок и литров пролитого пота. Но есть люди, которые считают, что могут добиться того же внешнего вида, что профессиональные атлеты, но гораздо быстрее и проще. Это действительно возможно, вопрос только в том, какой ценой?

Силиконовые мышцы

Первый способ обзавестись огромными мышцами без посещения тренажерного зала - лечь под нож хирурга. Современная хирургия дошла до того, что увеличивать можно уже не только грудь и губы, но и любую другую часть тела. И теперь не только женщины, но и мужчины активно вставляют себе силиконовые импланты, чтобы выглядеть привлекательнее.

Есть два способа вживления импланта - над мышцей и под мышцу. Первый вариант более простой, дешевый и не такой травмоопасный, но проблема в том, что такая мышца будет выглядеть неестественно и будет мягкой на ощупь. Во втором случае существующие мышцы буквально вскрываются и имплант засовывают под них, после чего мышечные ткани сшивают обратно. Такая операция очень сложная и опасная, а восстановление после нее займет долгие месяцы, зато результат будет качественнее - наличие импланта не будет заметно и мышца сохранит присущую ей твердость.

Вживление импланта - огромный риск, ведь тело может просто не принять его или ответить серьезной аллергической реакцией. Еще хуже могут быть последствия в результате повреждения импланта - можно вообще лишиться той части тела, куда была вживлена искусственная мышца.

Джастин Джедлика, Силиконовый Кен

Пожалуй, самым известным примером мужской пластической хирургии является американец Джастин Джедлика, он же Силиконовый Кен. Одержимый идеей быть похожим на друга куклы Барби, он перенес около 90 пластических операций общей стоимостью более 100 тысяч долларов. Больше всего изменений, конечно, претерпело лицо парня, однако и над рельефным телом постарались хирурги, вставив Джастину силиконовые импланты в грудь, руки, плечи и живот.

Пуш-ап

Да-да, мужской пуш-ап тоже существует. Он надевается под майку, застегивается на спине и имитирует рельефную грудь и пресс. Изобрели нехитрый заменитель мускулатуры в Японии, и в Азии он быстро приобрел популярность.

Синтол

Если к пластической хирургии мужчины пока обращаются редко, то еще более опасные химические способы искусственного увеличения мускулатуры применяются, к сожалению, гораздо чаще. Самый известный препарат - синтол, изобретенный в 1990-х годах и быстро ставший скандально известным. Синтол не обладает анаболическими свойствами, он увеличивает объем мышц за счет всасывания масел в мышечные волокна. То есть на самом деле мышцы не становятся больше, они просто набухают.

Выводится из организма синтол очень долго - до 5 лет. Кроме того, у него огромное количество побочных эффектов, многие из которых крайне опасны и грозят спортсменам тяжелыми последствиями, вплоть до летального исхода. Так, попадание масла в кровь может вызвать жировую эмболию, которая в свою очередь грозит инфарктом или инсультом. Среди других возможных проблем - различные инфекции, повреждения нервов, образование цист и язв.

Интернет пестрит многочисленными примерами «жертв» синтола, а легенды бодибилдинга активно выступают против таких методов увеличения мышц. «Мое отношение к синтолу такое же, как и ко всем имплантатам. Это попытка улучшить телосложение косметическими методами, избегая тяжелой работы, делающей бодибилдинг настоящим спортом», — заявлял шестикратный «Мистер Олимпия» Дориан Ятс.

Искусственная мышца является общим термином, используемым для исполнительных механизмов, материалов или устройств, которые имитируют естественную мышцу и может обратимо контракт, расширяющие или вращают в течение одного компонента из - за внешний стимул (например, как напряжение, ток, давление или температура). Три основные реакции приведения в действии - сокращение, расширение, и вращение - могут быть объединены вместе в едином компоненте для производства других типов движений (например, изгиб, стягивание одну стороны материала, расширяя другую сторону). Обычные двигатели и пневматические линейные или поворотные приводы не квалифицируются как искусственные мышцы, потому что есть более чем один компонент участвует в приведении.

Благодаря высокой гибкости, универсальность и мощности к весу по сравнению с традиционными жесткими приводами, искусственные мышцы имеют потенциал, чтобы быть весьма разрушительной новой технологией . Хотя в настоящее время ограниченное применение, технология может иметь широкое применение в будущем в промышленности, медицине, робототехнике и многих других областях.

Сравнение с естественными мышцами

Хотя нет никакой общей теории, которая позволяет приводы можно сравнить, есть «критерии мощности» для технологий искусственных мышц, которые позволяют спецификацию новых технологий привода в сравнении с естественными мышечными свойствами. Таким образом, критерии включают стресс , напряжение , скорость деформации , жизненный цикл, и модуль упругости . Некоторые авторы рассматривают другие критерии (Huber и др., 1997), такой как плотность привода и разрешение деформации. По состоянию на 2014 год, самые мощные искусственные мышечные волокна в существовании могут предложить сторицей увеличение мощности по эквивалентной длине естественных мышечных волокон.

Исследователи измеряют скорость, плотность энергии , мощность и эффективность искусственных мышц; не один типа искусственной мышцы является лучшим во всех областях.

Типы

Искусственные мышцы можно разделить на три основные группы в зависимости от их механизма приведения в действие.

Электрическое поле приведения в действие

Электроактивные полимеры (ППМ) представляют собой полимеры, которые могут быть приведены в действие посредством применения электрических полей. В настоящее время наиболее известные включают в себя пьезоэлектрические EAPs полимеров, диэлектрические приводы (Deas), электрострикционные привитые эластомеры , жидкие кристаллические эластомеры (LCE) и сегнетоэлектрических полимеров. Хотя эти EAPs можно согнуть, их низкая пропускная способность для движения крутящего момента в настоящее время ограничивает их полезность в качестве искусственных мышц. Более того, без принятого стандартного материала для создания устройств EAP, коммерциализация остается непрактичной. Однако, значительный прогресс был достигнут в технологии EAP с 1990 года.

Ion на основе приведения в действие

Ионные ППМ представляют собой полимеры, которые могут быть приведены в действие посредством диффузии ионов в растворе электролита (в дополнение к применению электрических полей). Текущие примеры ионных электроактивных полимеров включают polyelectrode гели, иономерный полимер, металлический композиционные материалы (IPMC), проводящие полимеры и электрореологические жидкости (ERF). В 2011 году было показано, что скрученные углеродные нанотрубки также может быть приведен в действие путем приложения электрического поля.

Электрическая мощность приведения в действие

Химический контроль

Хемомеханических полимеры, содержащие группы, которые являются либо рН-чувствительных или служить в качестве селективного сайт распознавания для конкретных химических соединений могут служить в качестве исполнительных механизмов и датчиков. Соответствующие гели набухать или сжиматься обратимо в ответ на такие химические сигналы. Большое разнообразие элементов supramolulecular распознавания может быть введено в геле - образующей полимеры, которые могут связываться и использовать в качестве инициатора ионов металлов, различных анионов, аминокислот, углеводов и т.д. Некоторые из этих полимеров обладают механическим ответом только тогда, когда две различными химическими веществ или инициаторы присутствует, выполняя таким образом, как логические ворота. Такие полимеры хемомеханические перспективны также для [[адресной доставки лекарств | целевая доставка лекарств ]]. Полимеры, содержащие легкие поглощающие элементы могут служить в качестве фотохимический управляемых искусственных мышц.

Приложения

Искусственные технологии мышца имеют широкие возможности применения в биомиметических машинах, в том числе роботов, промышленные приводов и экзоскелетов . EAP на основе искусственных мышц предлагают сочетание легкого веса, низким энергопотреблением, устойчивость и маневренность для передвижения и манипуляции. Будущие устройства EAP будут иметь применение в аэрокосмической, автомобильной промышленности, медицине, робототехнике, механизмы артикуляции, развлечения, анимация, игрушки, одежда, тактильных и тактильных интерфейсов, контроля уровня шума, датчиков, генераторов и интеллектуальных структур.

Пневматические искусственные мышцы также обеспечивают большую гибкость, управляемость и легкость по сравнению с обычными пневматическими цилиндрами. Большинство приложений PAM предполагают использование McKibben подобных мышц. Тепловые исполнительные механизмы, такие как СМА имеют различную военную, медицинскую, безопасность и роботизированных приложений, и может, кроме того, можно использовать для получения энергии за счет механических изменений формы.

Учеными из Национального университета Сингапура был создан новый тип искусственных мускулов, чьи показатели впечатлили коллег. Дело в том, что этот новый тип мускулов может растягиваться в пять раз, если учитывать их начальную длину, а вес, который они могут поднимать, превосходит их собственный в 80 раз.

Цель данной разработки обеспечить роботов удивительными силовыми характеристиками и при этом обеспечить наличие пластики как у человека.

По словам доктора Адриана Кох, который на данный момент является руководителем программы, полученный материал имеет структуру, схожую с мышечными тканями живых организмов.

Основной же интерес вызывает то, что, не смотря на свою силу, пластику и гибкость, эти искусственные мышцы реагируют на электрические управляющие импульсы в течение долей секунды, а это, несомненно, колоссальный результат.

Так, например, на данный момент подобного эффекта не может обеспечить никакая механика или гидравлика. Как рассказывает глава группы, если оснастить роботов данными быстродействующими искусственными мускулами, то тогда можно будет избавиться от механических движений роботов и приблизиться к «пластическим» показателям человека или различных животных. При всем этом, выносливость, сила и точность движений должны превосходить человеческие во много раз.

Данный материал представляет собой сложный композит, который, в свою очередь, состоит из различных полимеров. Используя в данном составе материала эластичные полимеры со способностью растягиваться в 10 раз и полимеров, способных выдерживать вес в 500 раз превышающий свой собственный, позволили добиться таких удивительных результатов. Как сообщают ученые – работа над разработкой будет длиться еще не один год, а в течение нескольких лет, планируется создать несколько видов конечностей для роботов, которые оснастят данным видом искусственных мускулов. Интересно то, что конечность будет иметь вес и размер в два раза меньше человеческого аналога, однако шансов на победу у человека будет не много.

Несмотря на то, что данная разработка является наиболее интересной для группы ученых именно в этой сфере, параллельно они планируют использовать полученный материал для иных целей. Так, например, новый материал способен выполнять превращение механической энергии в электрическую энергию и наоборот. И поэтому ученые параллельно занимаются разработкой конструкции электрического генератора на основе мягких полимерных материалов. Интерес тут представляет тот факт, что по планам его вес составит около 10 килограмм, а вырабатывать электроэнергии сможет столько же, сколько вырабатывает традиционный генератор, используемый в турбинах ветрогенераторов и весом в 1 тонну.

Чтение статьи займет: 6 мин.

Pulchritudo mundum servabit

(с латыни – красота спасет мир )

Независимо от действующего стандарта красоты тела человека, во все времена она пользовалась спросом. У красивых телоформ больше шансов удачно выйти замуж/жениться, расти в карьере, пользоваться популярностью и даже стать народным избранником… кино и театр, опять же. Естественно, обделенный стандартной красотой народ стремится хоть на немного приблизить свое «простенькое тельце» к эталону, терзая себя диетами, физическими нагрузками, затягиваясь в корсеты и, в крайнем варианте, общаясь по скайпу строго в режиме разговора без видео, или, в случае паршивой дикции, только перепиской. Но для современной индустрии силиконовых форм нет ничего невозможного!

За полвека разработаны пять поколений имплантатов «для коррекции красоты тела». Следует отметить, что абсолютно безопасной версии среди них не существует:

  • первое поколение (1960-1970 гг.) характеризовала прочная и толстая силиконовая оболочка с гладкой поверхностью, ее контуры можно было различить через кожу, при нажатии слышался хруст, схожий со звуком от сминаемого бумажного листа. Несмотря на толщину оболочки, ее наполнитель частично «пропотевал» наружу, вызывая частичное сморщивание тканей;
  • второе поколение (1970-1980 гг.) силиконовых имплантатов имели более тонкую оболочку и гладкую поверхность. Наполнителем, как и в первом поколении, служил силиконовый гель. Хруста они не издавали, но имели более высокую степень «пропотевания» и, что много хуже, часто рвались. Часть моделей имплантатов была покрыта губчатым материалом из микропенополиуретана, снижавшего вероятность воспаления и препятствовавшего смещению имплантата;
  • в оболочках третьего и четвертого поколений (созданы около 1985 г.) были учтены недостатки предыдущих моделей – текстура на поверхности, двойные стенки и двойная камера, с силиконовым гелем во внешней и солевым раствором во внутренней. Введение солевого раствора в нужном объеме позволяло корректировать форму имплантата после размещения «на месте». Два слоя наружных стенок препятствовали «пропотеванию», сводя его к минимуму. Разрывы имплантатов этих поколений редко, но случались;
  • пятое поколение (созданы около 1995 г.). Прочные, наполняемые силиконовым гелем с высокой межмолекулярной связью (когезией), не склонным к «пропотеванию». При перемене положения тела геометрия имплантатов не меняется под действием гравитации – наполнитель сохраняет память исходной формы. Однако 100% уверенности в их безопасности нет.

Наполнители силиконовых имплантатов:

  • жидкий силикон , по консистенции схож с растительным маслом;
  • желеобразный силиконовый гель со стандартной когезией . На ощупь выявить имплантат сложно, по плотности он соответствует живой ткани. Степень «пропотевания» низка, однако форму такой наполнитель хранит довольно слабо;
  • гель с высокой когезией , по консистенции схожий с мармеладом. Обладает крайне малой степенью деформации, не «пропотевает», но имеет высокую память формы, т.е. область тела в зоне имплантата может иметь неестественный вид;
  • гель со средней степенью когезии (soft touch), похожий на холодец. Память формы средняя, оболочка не «пропотевает»;
  • физиологический раствор (0,9% раствор поваренной соли в воде). Надежность имплантатов слабая, поскольку месяцев через девять с момента размещения в теле соль кристаллизуется, т.е. обретает частично твердую форму. Образующиеся кристаллы соли способны проткнуть оболочку имплантата.

В зависимости от зоны размещения имплантатам придется чаще овальная, реже – коническая форма. Во всех описанных ниже случаях применяются имплантаты не ниже третьего поколения.

Силиконовые груди . Задолго до появления первых хирургически модифицированных транссексуалов женщины отчаянно хотели улучшить форму своего бюста. В отсутствии иных вариантов, в ход шли различные ухищрения вроде набивного лифа и объемных кружев. Но они работали лишь до момента обнажения груди, а после… после конфуз был неизбежен. Попытку реконструировать молочные железы изнутри впервые предпринял чешский хирург Винсент Черни в 1895 году, используя жировую ткань пациентки.

Развитие киноиндустрии в начале XX века дало новый импульс в грудной имплантации. Хирурги искали оптимальный материал для увеличения женского бюста, заполняя его стеклянными шарами, жировой тканью, шерстью, свернутой в клубок полиэтиленовой лентой, пенопластом и даже, вероятно по аналогии со стеклом, шарами из слоновой кости. Среди перечисленных способов имплантации наиболее безвредной была жировая ткань самой пациентки, но новый бюст сохранял форму недолго – организм усваивал жир и груди обвисали больше, чем прежде.

Но формы кинодив не давали покоя крашеным блондинкам из США и Европы. Их логика была простой – если можно изменить цвет волос, то почему нельзя реконструировать грудь? К середине прошлого века объемы бюста увеличили порядка 50 000 женщин, в основном американок и японок (тружениц секс-индустрии из страны Восходящего Солнца). Они воспользовались новыми на тот момент материалами химической индустрии – губок из поливинила (из винила, как известно, грампластинки делали) и жидкого силикона (вводился инъекциями). Последствия были плачевны… груди настолько твердели, что приходилось спасать владелиц путем их полного удаления.

Силиконовые имплантаты в том виде, которые мы знаем сегодня, появились в 1961 году. Создала их американская корпорация Dow Corning – оболочка выполнялась из резины, наполнителем служил силиконовый гель. Спустя три года французская Arion выпускает свою версию силиконовых протезов, заполненных морской водой. В 80-х американские имплантаты сочли возможной причиной рака груди и к началу 90-х они были запрещены к массовому использованию. После шквала исков от владелиц силиконовых грудей Dow Corning выплатила более 3 миллиардов долларов компенсаций и подчистую разорилась.

Силиконовые ягодицы . Называется этот вид пластической операции глютеопластика. Цель использования имплантатов этой группы, как и в случае силиконовых грудей, связана с повышением эстетических характеристики тела – сделать плоское объемным.

По популярности среди представителей сильного и слабого полов ягодицы занимают второе место, а значит, их привлекательные параметры востребованы у потенциальных владельцев ягодичных имплантатов. Моду на оттопыренную попку среди женщин ввела Дженнифер Лопес – танцовщица, после киноактриса и певица. Пятая точка Джей Ло неизменно лидирует среди других «звездных ягодиц», чему способствует постоянная ее демонстрация.

Мне приходилось наблюдать в сети малоприятные видео с силиконовыми имплантатами в ягодицах, которые якобы можно было свободно провернуть под кожей. В действительности их правильная интеграция происходит под ягодичными мышцами, снаружи никак распознать, а уж тем более смещать имплантаты не получится.

Если груди с силиконовым наполнителем в основном пользуются популярностью у женщин, то силиконовые ягодицы одинаково привлекательны для обеих полов – ведь возрастное плоскопопие характерно и для мужчин и для женщин.

Силиконовые мышцы . Вспомним киногероев конца 80-х – брутальные, отчаянно накачанные парни класса «hasta la vista, babe», с лицом, не обезображенным мыслью. Шварценеггер, Сталлоне, Лунгрен, Скала Джонсон, Халк Хоган и многие другие – их всех прежде всего объединяли объемные, во множестве изобилующие мышцы по всему телу. Современные герои боевиков уже не те. В их черты лиц закрался интеллект, физические данные скорее на уровне medium – они стали играть свои роли, а не просто появляться в кадре грудой мышц с парой дежурных фраз на фоне антиударной белозубой улыбки.

Разумеется, мускулы киноидолов не имели естественно-природного происхождения, поскольку никакие тренировки сформировать столь выпуклые кубики и шары не позволят. Мужчины и женщины, твердо намеренные выделиться из серой массы землян впечатляющей мускулатурой, были вынуждены колоть, есть и пить химические препараты, искусственно усиливающие рост мышечных волокон и вызывающих приток крови в мускулы. Расходы на стероиды были весьма внушительны – от 25000-30000$ ежегодно. При этом объемные мышцы и реальная физическая сила не являлись синонимами – культурист способен поднять значительный вес на месте, но не способен перемещать вес, вполовину меньший поднятого, т.к. нет мышечной выносливости.

Современные актеры боевиков различного жанра приобрели удивительную способность менять объемы своего тела за считанные месяцы, что в прессе называется неким их физическим талантом и мастерством тренеров. В действительности, и с большой долей вероятности это можно утверждать, их тела тренированы не больше, чем у обычных людей, нагружающих свои мышцы лишь периодически. Заполучить рельефное тело гораздо проще при помощи силиконовых форм – имплантатов бицепса, кубиков на животе, дельтовых, икроножных мышц и пр. И при этом не случится никаких дефектов тканей и систем тела, позвоночнику не будет угрожать грыжа, а мышцам – растяжки и молочная кислота. Правда, имплантат может разорваться…

Представляю видео о двух наиболее известных в интернет-мире «имплантатных качках», считающих себя неотразимо прекрасными (я их мнения не разделяю)- британо-бразильца Родриго Алвеса и американца Джастина Джетлика:

Исследователи из Колумбийского университета в Нью-Йорке изобрели искусственные мышцы, способные поднимать грузы в тысячи раз тяжелее собственной массы. Методика изготовления настолько проста, а материалы настолько доступны, что заняться конструированием мягкой робототехники может любой желающий, особенно если в наличии имеется 3D-принтер.

Несмотря на сногсшибательные успехи , до настоящих «терминаторов» человечеству еще далеко. Алгоритмы постоянно совершенствуются, машины становятся все умнее – настолько, что искусственного интеллекта начинает побаиваться даже Илон Маск. А вдруг Теодор Качинский был прав? Но вот «железо» развивается куда более медленными темпами, чем «софт». Механические, пневматические и гидравлические актуаторы слишком сложны, да и зачастую ненадежны, материалы с эффектом памяти формы дороги и неэффективны, а электроактивные полимеры требуют относительно высоких энергетических затрат. Чем же приводить в движение андроидов будущего?

Свой вариант предложил доктор наук Аслан Мирийев, научный сотрудник лаборатории Creative Machines при Колумбийском университете. Идея заключается в изготовлении искусственных мышц из силиконовых эластомеров, насыщенных обычным питьевым спиртом. Этиловый спирт (хотя необязательно этиловый) играет ключевую роль, так как расширение и сокращение мышц происходит в результате перехода микрокапель этанола из жидкой фазы в газообразную и обратно. Достигается это за счет нагревания и охлаждения: испарение пойманного в силиконе спирта приводит к росту давления и, соответственно, расширению эластомерной конструкции.

Необходимая температура задается пронизывающим мышцу линейным или спиральным электрическим нагревательным элементом. При использовании этанола максимальный эффект достигается продолжительным нагреванием чуть выше точки кипения в 78,4°С. Насколько выше, зависит от состава используемого материала, ведь силикон будет сопротивляться расширению, а чем выше плотность материала, тем выше давление и температура кипения спирта. В своих опытах Аслан остановился на материале с 20-процентным содержанием этанола, как на оптимальном. Изготавливается смесь простым смешиванием силикона и этанола в необходимых пропорциях до равномерного распределения микропузырьков спирта. Затем смесь можно использовать для литья в формы или аддитивного производства методом робокастинга, то есть экструзионной 3D-печати, но без нагревания. Например, шприцевым экструдером. В ходе экспериментов искусственные мышцы продемонстрировали способность увеличиваться в объеме на 900% и выдерживать многократные нагрузки. Так, шестиграммовый образец тридцать раз подряд поднимал и опускал груз массой около шести килограммов, то есть в тысячу раз больше собственной! Максимальные же показатели и того выше: двухграммовый мускул осилил нагрузку в 12 кг, хотя и на пределе возможностей.

Пока все замечательно, но ведь мышцы должны сокращаться, а не расширяться? Ничего страшного. Рабочий вектор можно задавать оболочками, сдерживающими расширение в заданной плоскости. Например, бицепсы и трицепсы на иллюстрации выше заключены в сетку фиксированной длины, прикрепленную концами к плечу и предплечью. Диаметральное расширение приводит к продольному сокращению, как это происходит с настоящими мускулами. В этом примере использовались 13-граммовые мышцы, способные поднимать вес до одного килограмма при нагревании спиральным элементом из нихромовой проволоки под напряжением 30В с силой тока в 1,5А. Изгиб же можно задавать с помощью «пассивных» слоев из гибких материалов с относительно высоким сопротивлением на растяжение, наносимых на «внутреннюю» сторону деформируемого актуатора, как в примере с захватом на иллюстрации ниже.

Лабораторная стоимость изготовления таких мышц в пересчете на грамм не превышала трех центов. Для печати опытных конструкций из термопластов использовались настольные FDM 3D-принтеры Ultimaker, Ultimaker 2+ и Stratasys uPrint, тогда как печать непосредственно искусственных мышц осуществлялась на самодельном двухэкструдерном 3D-принтере, оснащенном шприцевыми головками. С полным докладом можно ознакомиться по этой ссылке .

А у вас есть интересные новости? Поделитесь с нами своими разработками, и мы расскажем о них всему миру!.