Путь энергетического обеспечения мышечной деятельности. Зоны энергообеспечения

Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение в уровнях развития аэробной и анаэробных составляющих спортивной работоспособности у представителей различных видов спорта. Особенности биохимических изменений в организме в критических условиях мышечной деятельности.

Среди ведущих биохимических факторов, определяющих спортивную работоспособность наиболее важными являются биоэнергетические (аэробные и анаэробные) возможности организма. В зависимости от интенсивности и характера обеспечения, работу предложено делить на несколько категорий:

  • анаэробную (алактатную) зону мощности нагрузок;
  • анаэробную (гликолитическую) зону;
  • зону смешанного анаэробно-аэробного обеспечения (преобладают анаэробные процессы);
  • зону смешанного аэробно-анаэробного обеспечения (преобладают аэробные процессы);
  • зону аэробного энергообеспечения.

Анаэробная работа максимальной мощности (10-20 сек.) выполняется в основном на внутриклеточных запасах фосфагена (креатинфосфат + АТФ). Кислородный долг невелик, имеет алактатный характер и должен покрыть ресинтез израсходованных макроэргов. Существенного накопления лактата не происходит, хотя возможно вовлечение гликолиза в обеспечение таких кратковременных нагрузок и содержание лактата в работающих мышцах увеличивается.

Работа субмаксимальных мощностей в зависимости от темпа и продолжительности лежит в зонах анаэробного (гликолитического) и анаэробно-аэробного энергетического обеспечения. Ведущим становится вклад анаэробного гликолиза, что приводит к накоплению высоких внутриклеточных концентраций лактата, закислению среды, развитию дефицита НАД и аутоингибированию процесса. Лактат обладает хорошей, но конечной скоростью проникновения через мембраны и равновесие между его содержанием в мышцах и плазме устанавливается лишь спустя 5-10 мин. от начала работы.

При работе большой мощности преобладает аэробный путь энергообеспечения (75-98 %). Работа умеренной мощности характеризуется практически полным аэробным энергообеспечением и возможностью длительного выполнения от 1 час. до многих часов в зависимости от конкретной мощности. Существует значительное число показателей, используемых для выявления уровня развития, аэробного и анаэробного механизмов преобразования энергии.

Одним из них дают интегральную оценку этих механизмов, другие – позволяют охарактеризовать различные их стороны (скорость развертывания, мощность, емкость, эффективность) или состояние какого-либо отдельного звена или этапа. Наиболее информативными являются показатели, регистрируемые при выполнении тестирующих нагрузок, вызывающих близкую к предельной активацию соответствующих процессов преобразования энергии. При этом следует учесть, что анаэробные процессы обладают высокой специфичностью и в наибольшей мере включаются в энергетическое обеспечение только того вида деятельности, в котором спортсмен прошел специальную тренировку. Это значит, что для оценки возможностей использования анаэробных процессов энергообеспечения работы, у велосипедистов наиболее подходят велоэргометрические тесты, у бегунов – бег и т.д.

Большое значение для выявления возможностей использования различных процессов энергообеспечения имеют мощность, продолжительность и характер выполняемого тестирующего упражнения. Например, для оценки уровня развития алактатного анаэробного механизма наиболее подходящими являются кратковременные (20-30 сек.) упражнения, выполняемые с максимальной интенсивностью. Наибольшие сдвиги, связанные с участием гликолитического анаэробного механизма энергообеспечения работы обнаруживаются при выполнении упражнений длительностью 1-3 мин. с предельной для этой продолжительности интенсивностью. Примером может быть работа, состоящая из 2-4 повторных упражнений, продолжительностью около 1 мин., выполняемые через равные или сокращающиеся интервалы отдыха. Каждое повторное упражнение должно выполняться с наибольшей возможной интенсивностью. Состояние аэробных и анаэробных процессов энергообеспечения мышечной работы можно охарактеризовать с помощью теста со ступенчатым увеличением нагрузки до "отказа".
Показателями, характеризующими уровень анаэробных систем, являются величины алактатного и лактатного кислородного долга, природа которых рассмотрена ранее. Информативными показателями глубины гликолитических анаэробных сдвигов являются максимальная концентрация молочной кислоты в крови, показатели активной реакции крови (рН) и сдвига буферных оснований (ВЕ).

Для оценки уровня развития аэробных механизмов энергообразования используется определение максимального потребления кислорода (МПК) – наибольшего кислородного потребления в единицу времени, которое может быть достигнуто в условиях напряженной мышечной работы.
МПК характеризует максимальную мощность аэробного процесса и носит интегральный (обобщенный) характер, так как способность вырабатывать энергию в аэробных процессах определяется совокупной деятельностью многих органов и систем организма, ответственных за утилизацию, транспорт и использование кислорода. В видах спорта, где основным источником энергии является аэробный процесс, наряду с мощностью, большое значение имеет его емкость. В качестве показателя емкости используется время удержания максимального кислородного потребления. Для этого вместе с величиной МПК определяется значение «критической мощности»- наименьшей мощности упражнения, при которой достигается МПК. Для этих целей наиболее удобен тест со ступенчатым увеличением нагрузки. Затем (обычно на следующий день) спортсменам предлагается выполнить работу на уровне критической мощности. Фиксируется время, в течение которого может удерживаться «критическая мощность» и изменяется потребление кислорода. Время работы на «критической мощности» и время удержания МПК хорошо коррелируют между собой и являются информативными в отношении емкости аэробного пути ресинтеза АТФ.

Как известно, начальные этапы любой достаточно напряженной мышечной работы обеспечиваются энергией за счет анаэробных процессов. Основная причина этого – инертность систем аэробного энергообеспечения. После развертывания аэробного процесса до уровня, соответствующего мощности выполняемого упражнения, могут возникнуть две ситуации:

  1. аэробные процессы полностью справляются с энергообеспечением организма;
  2. наряду с аэробным процессом в энергообеспечении участвует анаэробный гликолиз.

Исследованиями показано, что в упражнениях, мощность которых еще не достигла «критической», и, следовательно, аэробные процессы не развернулись до максимального уровня, в энергетическом обеспечении работы на всем ее протяжении может участвовать анаэробный гликолиз. Та наименьшая мощность, начиная с которой в выработке энергии на всем протяжении работы, наряду с аэробными процессами, принимает участие гликолиз, получила название "порога анаэробного обмена" (ПАНО) . Мощность ПАНО принято выражать в относительных единицах – уровнем потребления кислорода (в процентах от МПК), достигнутым во время работы. Улучшение тренированности к нагрузкам аэробной направленности сопровождается повышением ПАНО. Значение ПАНО зависит в первую очередь от особенностей аэробных механизмов энергообразования в частности, от их эффективности. Так как эффективность аэробного процесса может претерпевать изменения, например, за счет изменения сопряженности окисления с фосфорилированием, представляет интерес оценки этой стороны функциональной готовности организма. Наиболее важны внутри индивидуальные изменения этого показателя на разных этапах тренировочного цикла. Оценить эффективность аэробного процесса можно также в тесте со ступенчатым увеличением нагрузки при определении уровня кислородного потребления на каждой ступени.
Итак, участие анаэробных и аэробных процессов в энергетическом обеспечении мышечной деятельности определяется, с одной стороны, мощностью и другими особенностями выполняемого упражнения, с другой - кинетическими характеристиками (максимальная мощность, время удержания максимальной мощности, максимальная емкость и эффективность) процессов энергообразования.
Рассмотренные кинетические характеристики зависят от совместного действия множества тканей и органов и по-разному изменяются под воздействием тренировочных упражнений. Эту особенность ответной реакции биоэнергетических процессов на тренировочные нагрузки необходимо учитывать при составлении тренировочных программ.

text_fields

text_fields

arrow_upward

Первичным источником энергии для сокращения мышц и протека­ния других биохимических процессов служит аденозинтрифосфорная кислота (АТФ) , которая находится в клеточных структурах. При расщеп­лении одной грамм-молекулы АТФ на аденозиндифосфорную и фосфор­ную кислоты освобождается 10 ккал. Распад АТФ происходит при возбуж­дении мышечного волокна под действием нервных импульсов.

Запасы АТФ в мышцах незначительны и чтобы поддерживать актив­ ность мышц необходимо непрерывное пополнение (ресинтез) АТФ. Одним из способов ресинтеза АТФ является анаэробный (безучастия кислорода воздуха) механизм энергообеспечения.

Анаэробный ресинтез осуществляется, во-первых, за счет распада содержащегося в мышцах вещества — креатинфосфата, и, во-вторых, при расщеплении углеводов — запасов гликогена и поступающей с кровью глю­козы. Анаэробное расщепление углеводов называется гликолизом.

Энергообеспечение за счет креатинфосфата развертывается очень быстро, обеспечивает большую мощность работы, но длится всего не­сколько секунд, так как его запасы невелики. Гликолиз развертывается медленнее , в течение 2-3 мин интенсивной работы, обеспечивает бблыпую ее продолжительность, но из-за ограниченности запасов углеводов и нако­пления в крови недоокисленных продуктов распада (молочной кислоты) может осуществляться относительно недолго. Продукты распада окисля­ются в дальнейшем при достаточном поступлении кислорода после окон­чания работы или снижения ее интенсивности.

Таким образом, высокоинтенсивная мышечная деятельность прохо­дит при недостатке кислорода в течение ограниченного времени.

Аэробный механизм энергообеспечения мышечной деятельности

text_fields

text_fields

arrow_upward

Аэробный механизм ресинтеза АТФ заключается в расщеплении уг­леводов с участием кислорода воздуха. Он более эффективен по сравне­нию с анаэробным, так как приводит к образованию большего числа моле­кул АТФ при окислении одного и того же количества углеводов. Кроме то­го, аэробному окислению могут подвергаться белки и жиры, причем по­следние, как правило, имеются в организме в необходимом количестве.

Время развертывания аэробного механизма энергообеспечения со­ставляет 3-4 мин, у тренированных людей несколько меньше. Питательные вещества и недоокисленные ранее продукты при достаточном поступлении кислорода распадаются до углекислого газа и воды.

Продолжительность работы в аэробном режиме ограничена в основ­ном запасами питательных веществ в организме и может достигать не­скольких часов, однако интенсивность ее относительно невысока. Отличи­тельная особенность аэробного механизма энергообеспечения заключается в том, что в доставке кислорода к мышцам участвуют дыхательная, сер­дечно-сосудистая системы и система крови, от состояния которых зависит интенсивность и длительность выполняемой работы. Показатели мышеч­ной деятельности зависят также от способности мышечных клеток исполь­зовать поступающий к ним кислород для образования АТФ.

В большинстве случаев двигательная деятельность требует быстрого развертывания и протекает с меняющейся интенсивностью. При этом энер­гообеспечение не может осуществляться только за счет экономичного аэробного механизма.

Отсюда следует, что даже при подготовке к длительной работе невысокой и средней интенсивности надо уделять должное внимание совершенствованию анаэробного механизма энергообеспечения с использованием специальных методов тренировки.

Максимальное потребление кислорода, порог анаэробного обмена и кислородный долг при выполнении физических упражнений

text_fields

text_fields

arrow_upward

Для оценки подготовленности человека к физической работе различ­ной интенсивности используется ряд физиологических показателей.

К ним относятся:

  • максимальное потребление кислорода (МПК),
  • порог анаэроб­ного обмена (ПАНО),
  • кислородный долг.

Максимальное потребление кислорода

МПК — это наибольшее количество кислорода, которое может усво­ить организм в единицу времени в условиях, когда дальнейший рост ин­тенсивности нагрузки уже не вызывает его повышения. МПК является по­казателем аэробной производительности организма н связан с макси­мальным включением аэробного механизма энергообеспечения.

МПК представляет собой не только показатель тренированности человека, но и характеризует состояние его здоровья в цепом. У незанимающихся спор­том МПК находится на уровне 2-3.5 л/мин. У спортсменов высокого клас­са, тренирующихся на выносливость, МПК достигает 6 л/мин и более. По­казано, что снижение МПК ведет к развитию различных заболеваний.

Порог анаэробного обмена

ПАНО — это уровень ЧСС, при котором организм переходит от аэробного к анаэробному механизму энергообеспечения. Чем выше ПАНО, тем в большей степени работа производится за счет предпочтительных аэробных реакций.

У слабо подготовленных людей ПАНО может насту­пать уже при ЧСС 130-140 уд/мин, а у квалифицированных спортсменов, тренирующихся на выносливость — при 160-170 уд/мин. Средним считает­ся уровень 150 уд/мин.

Кислородный долг

Кислородный долг — это разница между количеством кислорода, не­обходимым для выполнения заданной работы и количеством кислорода, фактически использованным за это время. Максимальный кислородный долг отражает объем анаэробных процессов, которые могут быть развер­нуты в организме.

У незанимающихся спортом он не превышает 5 л, а у спортсменов высокого класса, специализирующихся в видах спорта, тре­бующих скоростной выносливости, достигает 25 л. Кислородный долг ли­квидируется после окончания работы.

Общая характеристика аэробной системы энергообеспечения

Аэробная система энергообеспечения значительно уступает алактатной и лактатной по мощности энергопродукции, скорости включения в обеспечение мышечной деятельности, однако многократно превосходит по ёмкости и экономичности (табл. 1).

Таблица № 1. Энергообеспечение мышечной работы

Особенностью аэробной системы является то, что образование АТФ в клеточных органелах-митохондриях, находящихся в мышечной ткани происходит при участии кислорода, доставляемого кислородтранспортной системой. Это предопределяет высокую экономичность аэробной системы, а достаточно большие запасы гликогена в мышечной ткани и печени, а также практически неограниченные запасы липидов - её ёмкость.

В наиболее упрощённом виде деятельность аэробной системы энергообеспечения осуществляется следующим образом. На первом этапе в результате сложных процессов происходит преобразование как гликогена, так и свободных жирных кислот (СЖК) в ацетил-кофермент А (ацетил-КоА) - активную форму уксусной кислоты, что обеспечивает протекание всех последующих процессов энергообразования по единой схеме. Однако до момента образования ацетил-КоА окисление гликогена и СЖК происходит самостоятельно.

Все многочисленные химические реакции, происходящие в процессе аэробного ресинтеза АТФ, можно разделить на три типа: 1 - аэробный гликолиз; 2 - цикл Кребса, 3 - система транспорта электронов (рис. 7).

Рис. 7. Этапы реакций ресинтеза АТФ в аэробном процессе

Первым этапом реакций является аэробный гликолиз, в результате которого осуществляется расщепление гликогена с образованием СО2 и Н2О. Протекание аэробного гликолиза происходит по той же схеме, что и протекание рассмотренного выше анаэробного гликолиза. В обоих случаях в результате химических реакций гликоген преобразуется в глюкозу, а глюкоза - в пировиноградную кислоту с ресинтезом АТФ. В этих реакциях кислород не участвует. Присутствие кислорода обнаруживается в дальнейшем, когда при его участии пировиноградная кислота не преобразуется в молочную кислоту в молочную кислоту, а затем в лактат, что имеет место в процессе анаэробного гликолиза, а направляется в аэробную систему, конечными продуктами которой оказывается углекислый газ (СО2), выводимый из организма лёгкими, и вода (рис. 8)


Рис. 8. Схематическое протекание анаэробного и аэробного гликолиза

Расщепление 1 моля гликогена на 2 моля пировиноградной кислоты происходит с выделением энергии, достаточной для ресинтеза 3 молей АТФ: Энергия + 3АДФ + Фн → 3АТФ

Из образовавшейся в результате расщепления гликогена пировиноградной кислоты сразу выводится СО2, превращая её из трёхуглеродного соединения в двухуглеродное, которое сочетаясь с коферментом А, образует ацетил- КоА, который включается во второй этап аэробного образования АТФ - цикл лимонной кислоты или цикл Кребса.

В цикле Кребса протекает серия сложных химических реакций, в результате которых происходит окисление пировиноградной кислоты - выведение ионов водорода (Н+) и электронов (е-), которые в итоге попадают в систему транспорта кислорода и участвуют в реакциях ресинтеза АТФ на третьем этапе, образуя СО2, который диффундируется в кровь и переносится в лёгкие, из которых и выводится из организма. В самом цикле Кребса образуется только 2 моля АТФ (рис. 9).


Рис. 9. Схематическое изображение окисления углеродов в цикле Кребса

Третий этап протекает в цепи транспорта электронов (дыхательной цепи). Реакции, происходящие с участием коферментов, в общем виде сводятся к следующему. Ионы водорода и электроны, выделяемые в результате реакций, протекавших в цикле Кребса и в меньшей мере в процессе гликолиза, транспортируются к кислороду, чтобы в результате образовать воду. Одновременно выделяемая энергия в серии сопряжённых реакций используется для ресинтеза АТФ. Весь процесс, происходящий по цепи передачи электронов кислороду называется окислительным фосфорилированием. В процессах, происходящих в дыхательной цепи, потребляется около 90 % поступающего к клеткам кислорода и образуется наибольшее количество АТФ. В общей сложности окислительная система транспорта электронов обеспечивает образование 34 молекул АТФ из одной молекулы гликогена.

Усвоение и абсорбция углеводов в кровоток происходит в тонком кишечнике. В печени они превращаются в глюкозу, которая в свою очередь может быть превращена в гликоген и депонируется в мышцах и печени, а также используется различными органами и тканями в качестве источника энергии для поддержания деятельности. В организме здорового с достаточным уровнем физической подготовленности мужчины с массой тела 75 кг содержится 500 - 550 г углеводов в виде гликогена мышц (около 80 %), гликогена печени (примерно 16 - 17 %), глюкозы крови (3 - 4 %), что соответствует энергетическим запасам порядка 2000 - 2200 ккал.

Гликоген печени (90 - 100 г) используется для поддержания уровня глюкозы крови, необходимого для обеспечения нормальной жизнедеятельности различных тканей и органов. При продолжительной работе аэробного характера, приводящей к истощению запасов мышечного гликогена, часть гликогена печении может использоваться мышцами.

Следует учитывать, что гликогенные запасы мышц и печени могут существенно увеличиваться под влиянием тренировки и пищевых манипуляций, предусматривающих углеводное истощение и последующее углеводное насыщение. Под влиянием тренировки и специального питания концентрация гликогена в печени может увеличиться в 2 раза. Увеличение количества гликогена повышает его доступность и скорость утилизации при выполнении последующей мышечной работы.

При продолжительных физических нагрузках средней интенсивности образование глюкозы в печени возрастает в 2 - 3 раза по сравнению с образованием её в состоянии покоя. Напряжённая продолжительная работа может привести к 7 - 10-кратному увеличению образования глюкозы в печени по сравнению с данными, полученными в состоянии покоя.

Эффективность процесса энергообеспечения за счёт жировых запасов определяется скоростью протекания липолиза и скоростью кровотока в адипозной ткани, что обеспечивает интенсивную доставку свободных жирных кислот (СЖК) к мышечным клеткам. Если работа выполняется с интенсивностью 50 - 60 % VO2 max, отмечается максимальный кровоток в адипозной ткани, что способствует максимальному поступлению в кровь СЖК. Более интенсивная мышечная работа связана с интенсификацией мышечного кровотока при одновременном уменьшении кровоснабжения адипозной ткани и, следовательно, с ухудшением доставки СЖК в мышечную ткань.

Хотя в процессе мышечной деятельности липолиз разворачивается, однако уже на 30 - 40-й минутах работы средней интенсивности её энергообеспечения в равной мере осуществляется за счёт окисления как углеводов, так и липидов. Дальнейшее продолжение работы, приводящее к постепенному исчерпанию ограниченных углеводных ресурсов, связано с увеличением окисления СЖК; например, энергообеспечение второй половины марафонской дистанции в беге или шоссейных велогонках (более 100 км) преимущественно связано с использованием жиров.

Несмотря на то что использование энергии от окисления липидов имеет реальное значение для обеспечения выносливости только при продолжительной мышечной деятельности, начиная уже с первых минут работы с интенсивностью, превышающей 60 % VO2max, отмечается освобождение из триацилглицеридов СЖК, их поступление и окисление в сокращающихся мышцах. Через 30 - 40 мин после начала работы скорость потребления СЖК возрастает в 3 раза, а после 3 - 4 часов работы - в 5 - 6 раз.

Внутримышечная утилизация триглицеридов существенно возрастает под влиянием тренировки аэробной направленности. Эта адаптационная реакция проявляется как в быстроте развёртывания процесса образования энергии за счёт окисления СЖК, поступивших из трицеридов мышц, так и в возрастании их утилизации из мышечной ткани.

Не менее важным адаптационным эффектом тренированной мышечной ткани является повышение её способности к утилизации жировых запасов. Так, после 12-недельной тренировки аэробной направленности способность к утилизации триглицеридов в работающих мышцах резко возрастала и достигала 40 %.

Роль белков для ресинтеза АТФ не существенна. Однако углеродный каркас многих аминокислот может быть использован в качестве энергетического топлива в процессе окислительного метаболизма, что проявляется при продолжительных нагрузках средней интенсивности, при которых вклад белкового метаболизма в энергопродукцию может достичь 5 - 6 % общей потребности в энергии.

Благодаря значительным запасам глюкозы и жиров в организме и неограниченной возможности потребления кислорода их атмосферного воздуха, аэробные процессы, обладая меньшей мощностью по сравнению с анаэробными, могут обеспечивать выполнение работы в течении длительного времени (т. е. их ёмкость очень велика при очень высокой экономичности). Исследования показывают, что, например в марафонском беге за счёт использования мышечного гликогена работа мышц продолжается в течении 80 мин. Определённое количество энергии может быть мобилизовано за счёт гликогена печени. В сумме это может обеспечить 75 % времени, необходимого для преодоления марафонской дистанции. Остальная энергия образуется в результате окисления жирных кислот. Однако скорость их диффузии из крови в мышцы ограничена, что лимитирует производство энергии за счёт этих кислот. Энергии, продуцируемой вследствие окисления СЖК, достаточно для поддержания интенсивности работы мышц на уровне 40 - 50 % VO2max, ВТО времы как сильнейшие марафонцы способны преодолевать дистанцию с интенсивностью, превышающей 80 - 90 % VO2max, что свидетельствует о высоком уровне адаптации аэробной системы энергообеспечения, позволяющем не только обеспечить оптимальное сочетание использования углеводов, жиров, отдельных аминокислот и метаболитов для производства энергии, но и экономное расходование гликогена.

Таким образом, вся совокупность реакций, обеспечивающих аэробное окисление гликогена, выглядит следующим образом. На первом этапе в результате аэробного гликолиза образуется пировиноградная кислота и ресинтезируется некоторое количество АТФ. На втором, в цикле Кребса, производится СО2, а ионы водорода (Н+) и электроны (е-) вводятся в систему транспорта электронов также с ресинтезом некоторого количества АТФ. И наконец, заключительный этап связан с образованием Н2О из Н+, е- и кислорода с высвобождением энергии, используемой для ресинтеза подавляющего количества АТФ. Жиры и белки, используемые в топлива для ресинтеза АТФ, также проходят через цикл Кребса и систему транспорта электронов (рис. 10).


Рис. 10. Схематическое изображение функционирования аэробной системы энергообеспечения

Лактатная система энергообеспечения.

В лактатной системе энергообеспечения ресинтез АТФ происходит за счёт расщепления глюкозы и гликогена при отсутствии кислорода. Этот процесс принято обозначать как анаэробный гликолиз. Анаэробный гликолиз является значительно более сложным химическим процессом по сравнению с механизмами расщепления фосфогенов в алактатной системе энергообеспечения. Он предусматривает протекание серии сложных последовательных реакций, в результате которых глюкоза и гликоген расщепляются до молочной кислоты, которая в серии сопряжённых реакций используется для ресинтеза АТФ (рис. 2).


Рис. 2. Схематическое изображение процесса анаэробного гликолиза

В результате расщепления 1 моля глюкозы образуется 2 моля АТФ, а при расщеплении 1 моля гликогена - 3 моля АТФ. Одновременно с высвобождением энергии в мышцах и жидкостях организма происходит образование пировиноградной кислоты, которая затем преобразуется в молочную кислоту. Молочная кислота быстро разлагается с образованием её соли - лактата.

Накопление молочной кислоты в результате интенсивной деятельности гликолитического механизма приводит к большому образованию лактата и ионов водорода (Н+) в мышцах. В результате, несмотря на действие буферных систем, постепенно снижается мышечный pH с 7,1 до 6,9 и даже до 6,5 - 6,4. Внутриклеточный pH, начиная с уровня 6,9 - 6,8 замедляет интенсивность гликолитической реакции восстановления запасов АТФ, а при pH 6,5 - 6,4 расщепление гликогена прекращается. Таким образом, именно повышение концентрации молочной кислоты в мышцах ограничивает расщепление гликогена в анаэробном гликолизе.

В отличие от алактатной системы энергообеспечения, мощность которой достигает максимальных показателей уже на первой секунде работы, процесс активизации гликолиза разворачивается значительно медленнее и достигает высоких величин энергопродукции только на 5 - 10 секундах работы. Мощность гликолитического процесса значительно уступает мощности креатинфосфокиназного механизма, однако является в несколко раз более высокой по сравнению с возможностями системы аэробного окисления. В частности, если уровень энергопродукции АТФ за счёт распада КФ составляет 9 - 10 ммоль/кг с.м.т./с (сырая масса ткани), то при подключении гликолиза объём производимой АТФ может увеличиться до 14 ммоль/кг с.м.т./с. За счёт использования обоих источников ресинтеза АТФ в течении 3-минутной интенсивной работы мышечная система человека способна вырабатывать около 370 ммоль/кг с.м.т. При этом на долю гликолиза приходится не менее 80 % общей продукции. Максимальная мощность лактатной анаэробной системы проявляется на 20 - 25-й секундах работы, а на 30 - 60-й секундах гликолитический путь ресинтеза АТФ является основным в энергообеспечении работы.

Ёмкость лактатной анаэробной системы обеспечивает её превалирующее участие в энергопродукции при выполнении работы продолжительность до 30 - 90 с. При более продолжительной работе роль гликолиза постепенно снижается, однако остаётся существенной и при более продолжительной работе - до 5 - 6 мин. Общее количество энергии, которое образуется за счёт гликолиза, наглядно может быть оценено и по показателям лактата крови после выполнения работы, требующей предельной мобилизации лактатной системы энергообеспечения. У нетренированных людей предельная концентрация лактата в крови составляет 11 - 12 ммоль/л. Под влиянием тренировки ёмкость лактатной системы резко возрастает и концентрация лактата в крови может достигать 25 - 30 ммоль/л и выше.

Максимальные величины энергообразования и лактата в крови у женщин на 30 - 40 % ниже по сравнению с мужчинами такой же спортивной специализации. Юные спортсмены по сравнению со взрослыми отличаются невысокими анаэробными возможностями. максимальная концентрация лактата в крови при предельных нагрузках анаэробного характера у них не превышает 10 ммоль/кг, что в 2 - 3 раза ниже, чем у взрослых спортсменов.

Таким образом, адаптационные реакции лактатной анаэробной системы могут протекать в различных направлениях. Одним из них является увеличение подвижности гликолитического процесса, что проявляется в значительно более быстром достижении его максимальной производительности (с 15 - 20 до 5 - 8 с). Вторая реакция связана с повышением мощности анаэробной гликолитической системы, что позволяет ей продуцировать значительно большее количество энергии в единицу времени. Третья реакция сводится к повышению ёмкости системы и, естественно общего объёма продуцируемой энергии, вследствие чего увеличивается продолжительность работы, преимущественно обеспечиваемая за счёт гликолиза.

Максимальное значение лактата и pH в артериальной крови в процессе соревнований по некоторым видам спорта представлены на рис. 3.


Рис.3. Максимальные значения лактата и pH в артериальной крови у спортсменов, специализирующихся в различных видах спорта: а - бег (400, 800 м); б - скоростной бег на коньках (500, 1000м); в - гребля (2000 м); г - плавание 100 м; д - бобслей; е - велогонки (100 км)
(Eindemann, Keul, 1977)

Они дают достаточно полное представление о роли лактатных анаэробных источников энергии для достижения высоких спортивных результатов разных видах спорта и об адаптационных резервах системы анаэробного гликолиза.

При выборе оптимальной продолжительности работы, обеспечивающей максимальную концентрацию лактата в мышцах, следует учитывать, что максимальное содержание лактата отмечается при использовании предельных нагрузок, продолжительность которых колеблется в пределах 1 - 6 мин. Увеличение продолжительности работы связано с уменьшением концентрации лактата в мышцах.

Для выбора оптимальной методики повышения анаэробных возможностей важно проследить особенности накопления лактата при прерывистой работе максимальной интенсивности. Например, одноминутные предельные нагрузки с четырёхминутными паузами приводят к постоянному увеличению лактата в крови (рис. 4) при одновременном снижениипоказателей кислотно-основного состояния (рис. 5).


Рис. 4. Изменение концентрации лактата в крови в процессе прерывистой максимальной нагрузки (одноминутные упражнения с интенсивностью 95 %, разделённые периодами отдыха длительностью 4 мин) (Hermansen, Stenswold, 1972)

Рис. 5. Изменение pH крови при прерывистом выполнении одноминутных нагрузок максимальной интенсивности (Hollman, Hettinger, 1980)

Аналогичный эффект отмечается и при выполнении 15 - 20-секундных упражнений максимальной мощности с паузами около 3 минут (рис. 6).


Рис. 6. Динамика биохимических изменений у спортсменов при повторном выполнении кратковременных упражнений максимальной мощности (Н. Волков и др., 2000)

Алактатная система энергообеспечения.

Эта система энергообеспечения является наименее сложной, отличается высокой мощностью освобождения энергии и кратковременностью действия. Образование энергии в этой системе происходит за счёт расщепления богатых энергией фосфатных соединений - аденозинтрифосфата (АТФ) и креатинфосфата (КФ). Энергия, образующаяся в результате распада АТФ, в полной мере включается в процесс энергообеспечения работы уже на первой секунде. Однако уже на второй секунде выполнение работы осуществляется за счёт креатинфосфата (КФ), депонированного в мышечных волокнах и содержащего богатые энергией фосфатные соединения. Расщепление этих соединений приводит к интенсивному высвобождению энергии. Конечными продуктами расщепления КФ являются креатин (Кр) и неорганический фосфат (Фн). Реакция стимулируется ферментом креатинкиназа и схематически выглядит следующим образом:

Энергия, высвобождаемая при распаде КФ, является доступной для процесса ресинтеза АТФ, поэтому за быстрым расщеплением АТФ в процессе мышечного сокращения незамедлительно следует его ресинтез из АДФ и Фн с привлечением энергии, высвобождаемой при расщеплении КФ:

Ещё одним механизмом алактатной системы энергообеспечения является так называемая миокиназная реакция, которая активизируется при значительном мышечном утомлении, когда скорость расщепления АТФ существенно превышает скорость её ресинтеза. Миокиназная реакция стимулируется ферментом миокиназа и заключается в переносе фосфатной группы с одной молекулы на другую и образованием АТФ и аденозинмонофосфата (АМФ):

Аденозинмонофосфат (АМФ), являющийся побочным продуктом миокиназной реакции, содержит последнюю фосфатную группу и в отличие от АТФ и АДФ не может быть использован в качестве источника энергии. Миокиназная реакция активизируется в условиях, когда в силу утомления другие пути ресинтеза АТФ исчерпали свои возможности.

Запасы КФ не могут быть восполнены в процессе выполнения работы. Для его ресинтеза может быть использована только энергия, высвобождаемая в результате распада АТФ, что оказывается возможным лишь в восстановительном периоде после окончания работы.

Алактатная система, отличаясь очень высокой скорость освобождения энергии, одновременно характеризуется крайне ограниченной ёмкостью. Уровень максимальной алактатной анаэробной мощности зависит от количества фосфатов (АТФ и КФ) в мышцах и скорости их использования. Под влиянием тренировки спринтерского характера показатели алактатной анаэробной мощности могут быть значительно повышены. Под влиянием специальной тренировки мощность алактатной анаэробной системы может быть увеличена на 40 -80 %. Например, спринтерская тренировка в течении 8 недель бегунов привела к увеличению содержания АТФ и КФ в скелетной мышце в состоянии покоя примерно на 10 %.

Под влиянием тренировки в мышцах не только увеличивается количество АТФ и Кф, но и существенно возрастает способность мышечной ткани к их расщеплению. Ещё одной адаптационной реакцией, определяющей мощность алактатной анаэробной системы, является ускорение ресинтеза фосфатов за счёт повышения активности ферментов, в частности креатинфосфокиназы и миокиназы.

Под влиянием тренировки существенно возрастают и показатели максимальной ёмкости алактатной анаэробной стстемы энергообеспечения. Ёмкость алактатной анаэробной системы под влиянием целенаправленной многолетней тренировки иожет возрастать в 2,5 раза. Это подтверждается показателями максимального алактатного О2-долга: у начинающих спортсменов он составляет 21,5 мл/кг, у спортсменов высокого класса может достигать 54,5 мл/кг.

Увеличение ёмкости алактатной энергетической системы проявляется и в продолжительности работы максимальной интенсивности. Так, у лиц не занимающихся спортом, максимальная мощность алактатного анаэробного процесса, достигнутая через 0,5 - 0,7 с после начала работы, может удерживаться не более 7 - 10 с, то у спортсменов высшего класса, специализирующихся в спринтерских дисциплинах, она может проявляться в течение 15 - 20 с. При этом большая продолжительность работы сопровождается и значительно большей её мощностью, что обусловливается высокой скоростью распада и ресинтеза высокоэнергетических фосфатов.

Концентрация АТФ и КФ у мужчин и женщин практически одинакова - около 4 ммоль/кг АТФ и 16 ммоль/кг КФ. Однако общее количество фосфогенов, которые могут использоваться при мышечной деятельности, у мужчин значительно больше, чем у женщин, что обусловлено большими различиями в общем объёме скелетной мускулатуры. Естественно, что у мужчин значительно больше ёмкость алактатной анаэробной системы энергообеспечения.

В заключении следует отметить, что лица с высоким уровнем алактатной анаэробной производительности, как правило, имеют низкие аэробные возможности, выносливость к длительной работе. Одновременно у бегунов на длинные дистанции алактатные анаэробные возможности не только не сравнимы с возможностями спринтеров, но и часто уступают показателям, регистрируемым у лиц, не занимающихся спортом.

Общая характеристика систем энергообеспечения мышечной деятельности

Энергия, как известно, представляет собой общую количественную меру, связывающую воедино все явления природы, разные формы движения материи. Из всех видов энергии, образующейся и использующейся в различных физических процессах(тепловая, механическая, химическая и др.)применительно к мышечной деятельности, основное внимание должно быть сконцентрировано на химической энергии организма, источником которой являются пищевые продукты и её преобразовании в механическую энергию двигательной деятельности человека.

Энергия, высвобождаемая во время расщепления пищевых продуктов, используется для производства аденозинтрифосфата (АТФ), который депонируется в мышечных клетках и является своеобразным топливом для производства механической энергии мышечного сокращения.

Энергию для мышечного сокращения даёт расщепление аденозинтрифосфата (АТФ) до аденозиндифосфата (АДФ) и неорганического фосфата (Ф). Количество АТФ в мышцах невелико и его достаточно для обеспечения высокоинтенсивной работы лишь в течении 1 - 2 с. Для продолжения работы необходим ресинтез АТФ, который производится за счёт энергоотдающих реакций трёх типов. Восполнение запасов АТФ в мышцах позволяет поддерживать постоянный уровень его концентрации, необходимый для полноценного мышечного сокращения.

Ресинтез АТФ обеспечивается как в анаэробных, так и в аэробных реакциях с привлечением в качестве энергетических источников запасов креатинфосфата (КФ) и АДФ, содержащихся в мышечных тканях, а также богатых энергией субстратов (гликоген мышц и печени, запасы липозной ткани и др.). Химические реакции, приводящие к обеспечению мышц энергией протекают в трёх энергетических системах: 1) анаэробной алактатной, 2) анаэробной лактатной (гликолитической), 3) аэробной.

Образование энергии в первых двух системах осуществляется в процессе химических реакций, не требующих наличия кислорода. Третья система предусматривает энергообеспечение мышечной деятельности в результате реакций окисления, протекающих с участием кислорода. Наиболее общие представления о последовательности включения и количественных соотношениях в энергообеспечении мышечной деятельности каждой из указанных систем приведены на рис. 1.

Возможности каждой из указанных энергетических систем определяются мощностью, т. е. скоростью освобождения энергии в метаболических процессах, и ёмкостью, которая определяется величиной и эффективностью использования субстратных фондов.


Рис. 1. Последовательность и количественные соотношения процессов энергообеспечения мышечной деятельности у квалифицированных спортсменов в различных энергетических системах (схема): 1 - алактатной; 2 - лактатной; 3 - аэробной

(по Е.С. Григоровичу, В.А. Переверзевой, 2008)

3.1. Механизмы энергообеспечения организма человека при мышечной работе

Любая мышечная деятельность сопряжена с использованием энергии, непосредственным источником которой является АТФ (аденозинтрифосфорная кислота ). АТФ называют универсальным источником энергии. Все остальные энергопроцессы направлены на воспроизводство и поддержание её уровня.

АТФ во время мышечной работы восстанавливается с такой же скоростью, как и расщепляется. Восстановление АТФ может осуществляться двумя путями – анаэробным (в ходе реакции без кислорода) и аэробным (с различным уровнем потребления кислорода) с участием специального энергетического вещества креатинфосфата . Готового для ресинтеза АТФ креатинфосфата хватает только на 10-15 секунд мощной работы. В таких условиях ресинтез АТФ идёт при остром дефиците кислорода (например, вот почему невозможно в спринтерском темпе пробежать 800 м). Мышечная работа очень высокой интенсивности осуществляется в анаэробном режиме, когда ресинтез АТФ совершается при остром дефиците кислорода. В этом случае организм добывает для работы АТФ, используя процесс гликолиза – превращения углеводородов, в результате которого вновь происходит ресинтез АТФ, и образуются конечные кислые продукты – молочная (лактат) и пировиноградная кислоты.

Гликолиз обеспечивает работоспособность организма в течение 2-4 минут, т.е. креатинфофатный механизм и гликолиз дают энергии совсем немного.

При высокой функциональной напряжённости в мышцах уменьшается содержание энергонасыщенных углеводов (гликогена и фосфорных – креатинфосфата), в крови снижается уровень глюкозы, в печени – гликогена. Если нагрузка продолжительная, то источник энергии восполняется за счёт повышения интенсивности освобождения жирных кислот из жировой ткани и их окисления в мышцах.

Аэробный механизм (когда запросы организма в кислороде полностью удовлетворяются) окисления питательных веществ с образованием креатинфосфата и ресинтеза АТФ является наиболее эффективным и может обеспечивать работоспособность человека в течение нескольких часов. В этих условиях организм добывает энергии АТФ во много раз больше, чем при гликолизе.

Следует отметить, что в клетках все превращения углеводов, жиров, органических кислот и, в последнюю очередь, белков на пути к ресинтезу АТФ проходят в митохондриях . В обычных условиях работает часть митохондрий, но по мере увеличения потребности мышц в энергии в процессе ресинтеза макроэнергетических соединений включается всё больше «подстанций».

Способность человека к ресинтезу АТФ, мощность и ёмкость каждого уровня индивидуальны, но диапазон всех уровней может быть расширен за счёт тренировки. Если запросы возрастают, в клетках увеличивается количество митохондрий, а при ещё большей потребности – убыстряется темп их обновления. Такой процесс повышает возможность использования кислорода в окислительных процессах и окисления жиров в большом количестве.

Важную роль в поддержании уровня кислорода в мышечных волокнах (особенно в красных – медленных) играет белок миоглобин , который содержит железо и по строению и функциям близок к гемоглобину.

Пример:

У тюленей массой 70 кг с миоглобином связано 2530 мл кислорода, что позволяет ему находиться под водой до 14 минут. У человека с той же массой с миоглобином связано 335 мл кислорода.

При выполнении физической нагрузки организму необходимо обеспечить работающие мышцы достаточным количеством кислорода для поддержания высокого уровня окислительных процессов, поставляющих энергию. Другими словами, нужно перестроить работу кардиореспираторной системы на режим увеличения вентиляции лёгких и возрастания объёмной скорости кровотока, прежде всего, в работающих органах (скелетных мышцах, сердце и др.) для оптимального удовлетворения их энергетических потребностей. Так, у тренированных лиц приспособление сердца к нагрузке происходит в большей степени за счёт повышения ударного объёма и в меньшей – за счёт увеличения частоты сердечных сокращений (ЧСС).

Любая мышечная работа требует энергии. Механическую энергию, затрачиваемую при напряжении мышца, берёт из собственных резервов химической энергии. Энергия, которая освобождается в результате сложных биохимических реакций, доставляется к тонким белковым нитям (мышечным волокнам), заставляет их менять своё положение, соединяться друг с другом и укорачиваться. Тем самым мышца, укорачиваясь, производит движение в суставе.

Энергия, необходимая для мышечной работы, образующаяся в результате биохимических реакций, основана на использовании трёх видов энергообразования: 1) аэробного, 2) анаэробно-гликолитического, 3) анаэробно-алактатного. Биоэнергетическими веществами (топливом) при выполнении мышечной работы являются углеводы , жиры и креатинфосфат. Белки необходимы организму, прежде всего как строительный материал для новых клеток.

Питательные вещества, проходя через желудочно-кишечный тракт, всасываются кровью и направляются дальше в «складские помещения». Жиры, которые могут быть рассмотрены как «низкоактановое топливо», откладываются преимущественно в подкожных тканях, Углеводы (гликоген) – высокоактановое топливо, накапливаются в мышцах и печени .

Если мощность выполняемой работы небольшая (умеренная), то энергия для работающих мышц образуется путём сгорания (окисления) углеводов и жиров при помощи вдыхаемого кислорода. В результате сгорания выделяется энергия, необходимая для работающих мышц и образуются побочные продукты – углекислый газ и вода.

Если мощность работы будет гораздо выше (большая или субмаксимальная), то энергии, выделяемой при сгорании углеводов (гликогена) будет не хватать и поэтому энергия, необходимая для такой работы образуется путём расщепления гликогена (без участия кислорода). Можно сказать, что в мышце имеется два механизма биохимических реакций – сгорания и расщепления.

Механизм сгорания (окисления)

Механизм сгорания углеводов и жиров можно назвать как аэробный процесс энергообразования (аэробный – с участием кислорода). Развёртывание аэробных процессов происходит постепенно, максимума этот процесс достигает через 1 -2 минуты после начала работы. Происходит полное сгорание углеводов и жиров, при котором образуется энергия, углекислый газ со2 и вода н2о, которые оттранспортировываются кровью.

Углеводы и жиры + кислород → сгорание = энергия + углекислый газ + вода.

Для того чтобы происходило сгорание (окисление), помимо «топлива» (углеводов и жиров) мышцы и ткани должны всё время снабжаться кислородом и освобождаться от продуктов «распада» (воды и углекислого газа). Транспортировка этих веществ осуществляется кровью. Чем больше кислорода получают мышцы, тем больше энергии может образовываться и тем более интенсивную работу можно выполнить. Поэтому аэробные возможности лимитируются дыхательной и сердечно-сосудистой системами. Утомление наступает, когда кончается «топливо». При соблюдении этих условий мышечная среда остаётся постоянной и можно работать 2-3 часа и более. Механизм сгорания (окисления) – доминирующий источник энергии при длительной малоинтенсивной и умеренной интенсивности работе (а также в покое).

Таблица №2. Зависимость между продолжительностью соревновательной дистанции и функциональной активностью различных систем организма, характеризующих аэробные возможности.

Механизм расщепления (анаэробный – без участия кислорода).

Механизм расщепления биоэнергетических веществ в человеческом организме происходит двумя путями: 1) расщепление гликогена, находящегося в мышцах – анаэробно-гликолитический механизм; 2) расщепление креатинфосфата (КрФ), так же находящегося в мышце – анаэробно-алактатный механизм.

Анаэробно – гликолитический механизм. Освобождение энергии происходит за счёт мгновенного расщепления содержащегося в мышце гликогена (более сложной формы углеводов).

Гликоген → расщепление = Энергия + молочная кислота (лактат).

Этот механизм даёт гораздо больше энергии в единицу времени, чем аэробный механизм и используется при выполнении работы субмаксимальной мощности, с продолжительностью отдельного упражнения от 30 секунд до 2-3 минут. Преимущество этого механизма, который можно сравнить с разрядкой электрической батареи, состоит в том, что он заключается в самой мышце и используется мгновенно. Недостаток же заключается в том, что в работающих мышцах накапливается большое количество молочной кислоты и им становится трудно справляться с воздействием кислой среды.

Таблица №3. Зависимость между продолжительностью соревновательной дистанции и функциональной активностью различных систем организма, характеризующих анаэробно-гликолитические возможности.

Анаэробно-алактатный механизм.

Для выполнения упражнений с максимальной скоростью (мощностью) необходим механизм, выделяющий наибольшее количество энергии в единицу времени, но действующий кратковременно (не более 15-20 секунд). Таким механизмом и является анаэробно-алактатный (креатинфосфатный).

Креатинфосфат (КрФ) → расщепление = Энергия + Креатин (Кр.).

Таблица №4. Зависимость между продолжительностью соревновательной дистанции и функциональной активностью различных систем организма, характеризующих анаэробно-алактатные возможности.