Тренировка выносливости в циклических видах спорта. Развитие локальной мышечной выносливости в циклических видах спорта, Е

Е.Б. Мякинченко, ПНИЛ

Имеется достаточное число экспериментальных фактов, позволяющих считать, что большая мощность энергетических и сократительных систем, локализованных непосредственно в мышцах и определяющих т.н. локальную выносливость (ЛВ), позволяет отдалить наступление утомления как сама по себе, так и путем снижения нагрузки на "центральные факторы", интенсивное функционирование которых также может приводить к утомлению и, следовательно, ограничивать спортивный результат в циклических видах спорта (ЦВС). Этим определяется важность всех аспектов, касающихся воспитания ЛВ в ЦВС.

На всех дистанция кроме спринтерских (длительность - до 40 секунд) фактором спортивного результата, является аэробная мощность мышц. С ним, при прочих равных условиях, связаны емкость анаэробного гликолиза (это важно для средних дистанций) и аэробная производительность (вклад в общее количество ресинтезируемой АТФ быстро возрастает с увеличением дистанции). Считается, что аэробная мощность зависит от массы ферментов митохондриальной системы. Наибольшей плотностью митохондрий обладают медленные мышечные волокна (ММВ) и быстрые окислительные МВ (БоМВ). Однако рекрутирование БоМВ и, тем более быстрых гликолитических МВ (БгМВ), накоплению лактата, снижению рН мышц, быстрому расходу гликогена и т.п., являющихся одной из причин утомления. Поэтому идеальным путем повышения аэробной мощности мышц могло бы быть увеличение производительности ММВ. Как этого добиться?

Считается, что аэробную мощность повышает увеличение плотности митохондрий. Это действительно так, однако в отношении БоМВ или БгМВ, но не в отношении ММВ. Это утверждение можно обосновать следующим образом. При мышечной работе с мощностью аэробного порога или ниже, когда в работу вовлечены, в основном, ММВ продукция лактата не превышает возможностей клеток по его утилизации. При этом нет оснований сомневаться, что хотя бы часть медленных двигательных единиц работают в условиях гладкого тетануса, т.е. - с максимальной мощностью. Это означает, что мощности митохондриальной системы в этих МВ хватает, для ресинтеза необходимого количества АТФ, расщепляемого на миофиламентах, в СПР и других органеллах МВ. Другими словами, в ММВ мощность миозиновой АТФ-азы сбалансирована с мощностью дыхательного фосфорилирования. В противном случае, часть пирувата интенсивно восстанавливалась бы до лактата. Следовательно, в процессе физической тренировки (по крайней мере у квалифицированных спортсменов в ЦВС) отсутствует основной стимул для индукции синтеза митохондриальных белков - дефицит энергии. Это подтверждается хорошо установленным фактом, что низкоинтенсивная аэробная тренировка (не выше уровня аэробного порога) обладает низкой эффективностью в отношении основных показателей аэробной мощности.

Тогда закономерно возникает вопрос - какими путями можно создать дефицит энергии в ММВ и, следовательно, стимулировать повышение их аэробной мощности?

Традиционно для этого используется два подхода: 1) повышение мощности тренировочной работы и 2) использование искусственного или естественного понижение напряжения кислорода во вдыхаемом воздухе, т.е. - создание гипоксии мышц. В первом случае аэробная мощность действительно повышается, однако за счет увеличения плотности митохондрий, капилляров в БМВ и сопутствующей перестройки механизмов регулирования регионального кровотока. А производительность ММВ, в общем случае, не растет (хотя есть исключения из этого правила, о которых будет упомянуто ниже). Второй путь, теоретически, должен быть более эффективен, но давать только временный эффект, так как, после возвращения в условия нормобарии стимул исчезнет и, в соответствии с принципом симорфоза, когда клетки избавляются от излишних структур, дыхательные способности ММВ вернутся к исходу, несмотря на продолжающиеся напряженные тренировки.

Таким образом, если в приведенных выше рассуждениях нет принципиальных ошибок, то стратегическими путями повышения аэробной мощности ММВ, гипотетически могут быть только два: (1) увеличение АТФ-азной активности миозина и/или (2) увеличение числа миофибрилл. Обе эти перестройки могут повысить энергозапрос во время тетанических сокращений и, следовательно, создать стимул для увеличения массы всех ферментативных систем энергообеспечения (креатинфосфокиназной и миокиназной реакций, аэробного и анаэробного гликолиза, b -окисления жиров и др.). Первая возможность очень гипотетична, так как АТФ-азная активность миозина зависит от типа иннервации волокон, генетически обусловлена и, как считается, перестройке поддается с большим трудом. Второй путь совершенно реален. Установлено, что при силовой тренировке сила растет за счет накопления миофиламентов во всех типах мышечных волокон.

В связи с этим возникают вопросы: 1) Не приведет ли гипертрофия ММВ к снижению их аэробной мощности (ведь известно, что представители силовых и скоростно-силовых видов спорта имеют низкие аэробные показатели, а высокая степень и длительность ацидоза мышц, при силовой тренировке могут иметь деструктивный эффект в отношении митохондриальной системы)? 2) Реализуется ли путь гипертрофии ММВ у представителей ЦВС?

В дискуссиях по первому вопросу обычно обсуждается модель Крога, предложенная в 1918 году, в которой участок ткани, снабжаемый одним капилляром, рассматривается как цилиндр, осью которого служит этот капилляр. Если принять допущение, что кислород внутри ткани перемещается исключительно за счет свободной диффузии, то расстояние между капиллярами становится критическим для адекватного снабжения всех точек клетки кислородом. Это может привести к тканевой гипоксии. В качестве доказательства приводится, например, то, что ткани, потребляющие в активном состоянии большое количество кислорода, обладают наиболее развитой капиллярной сетью (миокард, красные мышцы и др.); при аэробной тренировке окислительный потенциал мышц и капилляризация волокон возрастают, как правило параллельно. Причем увеличение плотности капилляров иногда происходит за счет уменьшения площади поперечного сечения мышечных волокон, что интерпретируется как адаптивная реакция, направленная на улучшение снабжения мышечной ткани кислородом за счет снижения диффузионного расстояния [Б.С.Шенкман, 1990а, Т.Л.Немировская, 1992].

Однако существуют хорошо известные факты, которые заставляют усомниться в бесспорности приведенных выше суждений.

1. В модели Крога не принимается во внимание роль оксимиоглобина. Известно, что оксимиоглобин выполняет две функции: (1) поддержание низкого внутриклеточного напряжения О2 для обеспечения высокого градиента по отношению к капиллярной крови и (2) транспорт кислорода внутри МВ в случае возникновения внутриклеточных градиентов кислорода. Поэтому наличие оксимиоглобина уменьшает градиент парциального напряжение кислорода в разных участках мышечных волокон, ликвидируя "гипоксические" участки.

2. Вокруг гипертрофированных оксидативных мышечных волокон капиллярная сеть настолько густая, что средняя плотность капилляров оказывается не менее высокой, чем в других местах мышцы . Среднее межкапиллярное расстояние, при этом оказывается существенно меньше 80 m м, которое считается критическим для адекватного снабжения ткани кислородом даже на основании расчетов по модели Крога (т.е. - без учета роли оксимиоглобина).

3. Прямые измерения показали, что напряжение кислорода внутри мышечных волокон в состоянии максимальной респирации митохондрий не зависит от размера волокон .

4. Показано, что в гипертрофированных мышечных волокнах митохондрии располагаются по периметру волокна . Это уменьшает диффузионное расстояние и не вызывает необходимости накопления миоглобина.

(1)

(2)

(3)

(4)

Рис. 1. Величина средней площади поперечного сечения (мкм 2) по литературным данным [см. обзор Е.Б.Мякинченко, 1997] медленных мышечных волокон у мужчин: (1) контроля, (2) элитных бодибилдеров; (3) спортсменов тренирующихся на выносливость в мышцах нижних (бег, коньки, гребля, велоспорт) и (4) верхних (плавание, гребля) конечностей.

5. Существуют наблюдения [обзор Т.Л. Немировской, 1992] о реципрокных отношениях между концентрацией миоглобина с одной стороны, плотностью капилляров и окислительным потенциалом МВ - с другой в процессе объемной аэробной тренировки. Следовательно, можно предположить, что система внутриклеточного транспорта кислорода обладает резервами производительности, делающими ненужной высокую концентрацию миоглобина при высокой капилляризации мышц (т.е. - при маленьком диффузионном расстоянии).

6. Существуют многочисленные наблюдения о высокой степени гипертрофии мышечных волокон у спортсменов экстракласса, тренирующих выносливость (рис. 1).

7. Аэробная мощность и результат в ЦВС растет параллельно с гипертрофией ММВ. [Б.С.Шенкман, 1990б].

Однако гипертрофия МВ бывает саркоплазматического или миофибриллярного типа [Г.Хопеллер, 1987]. Какой тип реализуется у спортсменов в ЦВС? Известно, что объемная плотность митохондрий может возрасти, в среднем, на 3-5% [Г.Хопеллер, 1987], количество гликогена - на 1%, гипотеза, что гипертрофия ММВ может быть связана с большим количеством воды, связанной с гликогеном, не имеет экспериментального подтверждения. Таким образом 50-100% гипертрофия ММВ может быть обусловлена, в значительной мере, ростом массы миофиламентов и связанных с ними органелл клеток в результате силовой тренировки. Меньшие показатели силы и скоростно-силовых способностей спортсменов, тренирующих выносливость, , могут быть связаны с меньшей степенью развития "нервного" компонента мышечной силы.

Выводы. Приведенные выше рассуждения позволяют выдвинуть парадоксальную, на первый взгляд, гипотезу, что стратегическим путем повышения аэробных способностей мышц является гипертрофия ММВ миофибриллярного типа. Тогда способом реализации этого пути будет оптимальное сочетание аэробной тренировки с силовой, в которой основное воздействие осуществляется на ММВ.

Литература.

1. Мякинченко Е.Б. Локальная выносливость в беге . М.: ФОН, 1997.-312с.

Текущая страница: 1 (всего у книги 2 страниц)

Анатолий Якимов, Август Ревзон
Инновационная тренировка выносливости в циклических видах спорта

© Якимов А. М., Ревзон А. С., 2018

* * *

ЯКИМОВ Анатолий Михайлович


РЕВЗОН Август Самсонович


Единомышленники, спортивные педагоги, доценты Московской государственной академии физической культуры Анатолий Михайлович Якимов и Август Самсонович Ревзон – авторы восьми монографий и более 500 научно-методических публикаций по проблемам спорта, физической культуры и валеологии в нашей стране и за рубежом.

За четыре десятилетия совместной работы они подготовили целую плеяду преподавателей-тренеров по разным видам спорта. Большое количество высококвалифицированных легкоатлетов. Некоторые из них стали чемпионами и призерами первенств СССР, России, чемпионатов Европы и мира, победителями международных юношеских соревнований.

От авторов

Не соревнования делают атлета, а эффективная система тренировки.


Как известно, самое большое количество золотых наград разыгрывается на летних и зимних Олимпийских играх в циклических видах спорта на выносливость (бег на средние, длинные и марафонские дистанции, спортивная ходьба, гребля на байдарках и каноэ, академическая гребля, плавание, велосипед, лыжи, коньки, биатлон, шорт-трек).

Некоторые циклические виды спорта имеют более чем вековую историю. Изучая их развитие в научно-методической литературе, авторы сразу же столкнулись с терминологическими разночтениями методов тренировки. Многие термины используются как нечто само собой разумеющееся без четкого определения. А это, безусловно, мешает взаимопониманию специалистов в вопросах методики тренинга.

Вот лишь один пример. Знаменитый тренер Артур Лидьярд заявил, что он не применяет интервального метода в своей тренировке. Но вот как выглядит отрывок из его тренировочной программы: «Бег на 2 мили с быстрыми рывками на 50 ярдов». Совершенно ясно, что одними специалистами такая работа будет рассматриваться как тренировка с использованием интервального метода, а другими – как одна из разновидностей фартлека. Таких примеров можно привести немало.

Существующий многие десятилетия в нашей стране стихийный подход к терминологии методов тренировки среди специалистов по циклическим видам спорта уже давно приводит к путанице, становится барьером на пути дальнейшего развития научных основ методики тренировки и мешает совершенствованию практической деятельности наставников атлетов. Вот почему на основании изучения ряда иностранных источников и отечественной литературы нами была систематизирована вся терминология методов тренинга, применяемая в циклических видах спорта на выносливость.

I. Методы тренировки выносливости

В период, когда методика тренировки в циклических видах спорта на выносливость делала первые шаги, отдельные тренеры интуитивно уже предпринимали попытки найти наиболее эффективные методы, способствующие росту спортивных результатов. Однако с уверенностью можно сказать, что до 30-х годов прошлого века систематических научных исследований, направленных на повышение тренированности в циклике на выносливость, не проводилось.

И хотя такие методы тренинга, как метод длительных, непрерывных, равномерных нагрузок, фартлек, повторный и интервальный уже не один десяток лет применялись и применяются до сих пор в подготовке спортсменов, ученые, тренеры не до конца разобрались в их достоинствах и недостатках. Не говоря уже о других методах, появившихся гораздо позднее. Как показали наши исследования, точное время появления большинства методов тренировки установить нельзя.

1.1. Метод длительных, непрерывных, равномерных нагрузок

Этот метод специалистами в разных странах называется по-разному: метод длительной, равномерной тренировки, непрерывный метод и т. п. Он не был чьим-либо открытием, как это было с некоторыми другими методами. Собственно, он был основным методом в подготовке бегунов, начиная с момента зарождения методики тренировки и до 20–30-х годов прошлого века. Именно с использованием этого метода тренировки были связаны рекордные достижения в беге на средние и длинные дистанции того периода. Применяли его такие выдающиеся бегуны своего времени, как У. Джордж, А. Шрабб, П. Нурми, В. Ритола и др.

Как говорит само название метода, спортсмены тренируются на дистанциях более длинных, чем основная дистанция соревнований, к которым они готовятся. Скорость продвижения при этом должна быть меньше, чем соревновательная. Данный метод тренировки не требует каких-то особых специальных условий. Он применяется в основном на местности, что способствует разнообразию тренировки. А упускать из виду психологический эффект тренировки (часто – на местности) ни в коем случае нельзя, так как в подготовке спортсмена к высоким результатам он не менее важен, чем физиологический или технический.

В свое время тренировка в длительном, равномерном темпе считалась единственно известным способом развития «большого сердца». Во всех учебниках и пособиях по спортивной медицине 50-х годов прошлого столетия воздействие длительного, непрерывного, равномерного метода на сердце спортсмена в смысле увеличения его размеров отмечалось неоднократно.

Известный голландский специалист Э. Ван Аакен характеризует этот метод как «тренировку выносливости в определенном устойчивом состоянии организма без увеличения его первоначального кислородного долга и образования молочной кислоты, со средней частотой пульса, равной 140 уд./мин. Это состояние достигается длительными пробежками от 6 до 50 миль». Он также считает, что этот метод оказывает положительное влияние на развитие кровообращения и капилляризацию мышц.

Советский биохимик профессор Н. Н. Яковлев так обосновывает влияние тренировки в таком беге на обмен веществ: «Это упражнение должно позволить организму выдерживать бег в устойчивом состоянии как можно дольше. Следовательно, для бегуна на длинные дистанции и бег с перерывами и повторные пробежки недостаточны. Для приобретения общей выносливости бег в непрерывном, равномерном, длительном темпе незаменим, чтобы приучить организм к экономному обмену веществ. Поэтому важно выработать условный рефлекс экономического усилия (путем тренировки) и развить функциональные способности организма, приспособленные к деятельности в течение продолжительного отрезка времени».

Вначале считали, что метод длительных, непрерывных, равномерных нагрузок способствует совершенствованию аэробных процессов, но затем специалисты пришли к выводу, что он улучшает и анаэробные процессы, т. е. специальную выносливость спортсмена. Вот что пишет по этому поводу польский тренер Я. Муляк: «Длительный, равномерный бег является наиболее простым, наиболее верным для большинства бегунов на 5000 и 10000 м, необходимым средством создания специальной выносливости. Только для спортсменов с большой врожденной выносливостью, таких как В. Куц и Э. Затопек, может оказаться достаточной интервальная тренировка на коротких и средних дистанциях… Равномерный бег является необходимым средством, позволяющим поддерживать равновесие систем кровообращения и дыхания в период приобретения спортивной формы для стайеров и для бегунов на средние дистанции».

Используя этот метод, тренер должен обращать внимание на два компонента нагрузки: скорость передвижения и общую продолжительность. Следует учитывать, что скорость передвижения и продолжительность общего времени воздействия данного метода связаны обратной зависимостью, а именно: чем выше скорость передвижения, тем меньше должно быть общее время использования метода.

Согласно научным исследованиям последних лет, при небольших различиях в скорости передвижения у одного и того же спортсмена наблюдаются значительные различия в потреблении кислорода. Следовательно, спортсмену необходимо установить такую скорость передвижения, которая соответствовала бы устойчивому состоянию. Зарубежные тренеры определяют его как состояние спортсмена, при котором он может разговаривать в продвижении по дистанции. Задача состоит в том, чтобы спортсмен сумел распределить свои усилия так, чтобы преодолеть всю дистанцию в равномерном темпе. Если же спортсмен к концу дистанции сбавляет скорость передвижения, значит, он не выполнил поставленную задачу.

На основе научных исследований и эмпирических наблюдений было предложено в качестве контроля в данном методе использовать частоту пульса, которая должна составлять 130–160 уд./мин и поддерживаться в течение 30 мин и более. Было также высказано предположение о том, что непродолжительное продвижение, длящееся менее 30 мин, дает лишь незначительный положительный эффект (если, конечно, проводится продвижение спортсмена в быстром темпе, когда частота пульса достигает 170–180 уд./мин).

Для наглядности приводим наиболее часто встречающиеся в практической работе спортсмена, вооруженного пульсометром, разновидности диапазонов ЧСС при использовании метода длительных, непрерывных, равномерных нагрузок:

1. На мониторе спортсмена устанавливается диапазон ЧСС в границах 110–115 или 115–120 уд./мин. Это подойдет для ходьбы.

2. На мониторе устанавливается диапазон ЧСС на уровне 120–125 или 125–130 уд./мин, при котором спортсмен продвигается по дистанции примерно 1 ч 30 мин.

3. На мониторе устанавливается диапазон ЧСС на уровне 130–135 или 135–140 уд./мин. В этом пульсовом режиме многие спортсмены в циклических видах спорта проводят разминку как перед тренировкой, так и перед соревнованиями.

4. На мониторе устанавливается диапазон ЧСС на уровне 140–145 уд./мин или 145–150 уд./мин, при котором спортсмен продвигается по дистанции примерно 1 ч 20 мин.

5. На мониторе устанавливается диапазон ЧСС на уровне 150–155 или 155–160 уд./мин, при котором спортсмен продвигается около 1 ч 10 мин.

6. На мониторе устанавливается диапазон ЧСС на уровне 160–165 или 165–170 уд./мин, при котором спортсмен продвигается примерно 1 ч.

Спортсмену не следует устанавливать диапазон ЧСС на уровне своего соревновательного пульса, так как в этом случае будет использоваться уже не метод длительных, непрерывных, равномерных нагрузок, а соревновательный метод.

Метод длительных, непрерывных, равномерных нагрузок решает следующие задачи:

1. Развитие выносливости сердечно-сосудистой системы и общей выносливости.

2. Совершенствование техники передвижения.

3. Приобретение спортсменом уверенности в своих силах (если вы в своих тренировках будете преодолевать более длинные дистанции, чем основная соревновательная, то с годами сможете лучше преодолеть и последнюю).

Достоинства метода длительных, непрерывных, равномерных нагрузок заключается в следующем:

1. Он способствует налаживанию функциональной интеграции всех органов и систем организма спортсмена. Помогает переходу на более высокий уровень работоспособности.

2. Длительная работа в равномерном темпе, как никакая другая форма тренировки, помогает выработать экономичную технику передвижения. Учит спортсмена правильно распределять усилия, хорошо расслаблять мышцы.

3. Уменьшается опасность перетренировки (как известно, «убивает не дистанция, а скорость ее преодоления» (высокие пульсовые режимы)).

К недостаткам метода следует отнести то, что его реализация не предъявляет специфических требований к мышцам ног, рук и туловища, а также не заставляет организм спортсмена работать в условиях, близких к соревновательным.

Данный метод не готовит спортсмена конкретно к какой-нибудь дистанции, а является своего рода фундаментом для применения других методов. Он является и средством восстановления, когда передвижение проводится в пульсовом режиме 120–130 уд./мин. Этот метод применяется постоянно и круглогодично. Отдельные пульсовые режимы – 120–125 уд./мин и 130–140 уд./мин – наиболее целесообразно применять на первых этапах тренировки.

1.2. Фартлек

Наблюдали ли вы когда-нибудь за играми детей? Не тогда, когда они играют в куклы или что-то сооружают в песочнице. Понаблюдайте за ними, когда они сражаются в лапту или футбол, когда ведут бесстрашную «войну», изображая то «красных» и «белых», то «казаков» и «разбойников». Вы обязательно обратите внимание на то, что в этих бесконечных играх они предпочитают ходьбе бег, а когда, вдоволь набегавшись, почувствуют усталость, отдыхают. Но уже через несколько секунд отдых сменяется беготней.

Это и есть фартлек. Фартлек – шведское слово, означающее «скоростная игра», или «игра скоростей». Именно в детских играх, играх детенышей животных заложены основные элементы данного метода тренировок. Фартлек, по мнению многих специалистов, является самым «философским» методом тренировки.

Он требует выполнения двух главных условий:

– бег должен проводиться на природе. Неважно, равнина это или высокие холмы, лес или поле, песок или снег. Все зависит от периода тренировки и дистанции, на которой собирается выступать спортсмен;

– величина беговых ускорений, пауз и форм отдыха, следующих за ними, определяется самим спортсменом по самочувствию. Таким образом, следует постоянное чередование скорости бега: на смену ускорения приходит ходьба или (чаще) медленный бег, которые вместе с красотой окружающей природы благоприятно воздействуют на психику спортсмена.

Основоположником данного метода тренировки в середине 30-х годов был шведский тренер Госта Холмер. Еще в 80-е годы XIX столетия англичанин Джордж, как считают некоторые специалисты, использовал метод тренировки, напоминающий фартлек. Однако своим названием и ростом популярности этот метод обязан Госте Холмеру. В период Второй мировой войны многие рекорды в беге на средние и длинные дистанции были побиты спортсменами Швеции. В первую очередь следует назвать Гюнтера Хэгга – 4.01,4 (миля – мировой рекорд); но в условиях военного времени он не мог помериться силами с сильнейшими бегунами мира. К тому же в 1945 г., сразу же после установления мирового рекорда на 1 милю, он был объявлен профессионалом и в итоге не смог преодолеть 4-минутный барьер, к которому был близок и который был преодолен лишь девять лет спустя Р. Баннистером.

В своей подготовке Г. Хэгг уделял фартлеку основную часть времени – больше, чем другим методам тренировки.

В лесу он проложил пятикилометровую трассу, которая имела четыре подъема, включая один крутой, два заболоченных участка с тяжелыми условиями для отталкивания, один длинный спуск. Три участка он пробегал со спринтерскими рывками, один прямой участок – в равномерном темпе. На этой, а также на других подобных трассах Г. Хэгг тренировался в течение шести лет – с 1940 по 1945 г. Элементы своей тренировочной программы он тщательно планировал и стремился к их осуществлению.

Огромный успех шведских бегунов на средних и длинных дистанциях в эти годы возбудил небывалый интерес тренеров из других стран к данному методу тренировки. В апреле 1949 г. Госта Холмер в статье «Тренировочный план», напечатанной в журнале «Новости легкой атлетики», сформулировал основные положения метода «фартлек»: «Бег должен проходить по пересеченной местности, где поверхность почвы мягкая и упругая, а так как из больших городов попасть в лес трудно, то вы должны на спортивном поле или вокруг него сделать дорожку, покрытую опилками, чтобы она была мягкой. Атлет должен тренироваться от 1-го до 2-х часов в день по следующему плану:

1. Легкий бег от 5 до 10 мин (как разминка).

2. Равномерный, сильный бег на 1–2 км.

3. Быстрая ходьба в течение 5 мин.

4. Легкий переменный бег с короткими ускорениями на 50–60 м (55–65 ярдов1
1 ярд = 0,91 м.

) – до появления небольшой усталости.

5. Легкий бег с включением время от времени трех или четырех быстрых шагов (эти быстрые шаги похожи на внезапное ускорение во время соревнований, когда спортсмен старается уйти от соперника, пытающегося выйти вперед. Туловище внезапно наклоняется вперед, и делается три или четыре быстрых неожиданных шагов).

6. Бег в подъем с полной скоростью от 150 до 200 м (165–220 ярдов).

7. Бег в быстром темпе 1 мин, который следует за пробой сил, описанной в п. 6.

Вышеуказанная работа может быть повторена до конца тренировки; каждому атлету необходимо хорошо помнить, что после тренировки он должен чувствовать не утомление, а скорее подъем».

Ниже приводится типичный недельный цикл, рекомендуемый Холмером для бегунов на милю2
1 миля = 1609 м.

С использованием фартлека:


ПОНЕДЕЛЬНИК

1. Фартлек – 45 мин.

2. Бег на 440 ярдов, как в соревновании.

3. Повторить бег на 440 ярдов два или три раза (между этими пробежками проводится легкий бег в течение 5 мин).


1. Фартлек – 20 мин.

2. Бег на 880 ярдов по дорожке (каждый круг на 2 с медленнее, чем на соревновании).

3. Повторить снова то же в течение последующего часа. Между пробежками и после – легкий бег по дерну.


Прогулка в лесу 2 ч.


То же, что и в понедельник, но во время фартлека бег на подъем от двух до 10 раз по 150 ярдов.


То же, что и во вторник, но вместо двух раз по 880 ярдов пробегите 4 раза по 440 ярдов, каждый круг на 1 с медленнее, чем на соревнованиях.



ВОСКРЕСЕНЬЕ

Разминка и бег на одну милю. Первые 440 ярдов и последние 100 ярдов – со скоростью соревнования. Бег в середине – на 2 с медленнее (каждый круг). (Тренировочный темп строится на темпе, характерном для отдельного атлета. Тренируйтесь напряженно один раз в десять дней).


Холмер подразделяет план тренировки на четыре периода с постоянно увеличивающейся интенсивностью работы; месяцы тренировок отражают шведские периоды, которые начинаются позднее наших.

1. Подготовительный период: с января до середины апреля. Ходьба, легкий бег и гимнастические упражнения в закрытом помещении.

2. Предсезонный: с середины апреля до середины мая. Беговая работа и фартлек частично с тренировкой скорости.

3. Сезон ранних соревнований: с середины мая до первых дней июня. Тренируйтесь, как указано выше, но с одним соревнованием в течение каждой недели.

4. Сезон соревнований: с первых дней июля по сентябрь. Количество тренировок должно соответствовать количеству соревнований.

Дальнейшее развитие фартлека было сделано С. А. Томлиным в английском журнале «Атлетика»: «Бегуны, тренирующиеся по системе «фартлек», занимаются на пересеченной местности или на травяном спортивном поле дважды в неделю в подготовительном периоде и один раз во время периодов соревнований. Скорость развивается бегом на 220 ярдов по дорожке два или три раза в неделю. Бегун делает серию таких спуртов со скоростью более высокой, чем средняя скорость его бега на соревновании. Например, бегун на одну милю, показывающий результат 4 мин 24 с, пробегает каждые 220 ярдов со средней скоростью 33 с. Его тренировочная скорость на 220 ярдов поэтому должна быть 28–29 с. Он пробегает 220 ярдов, возвращается к месту старта и снова бежит, пока не почувствует себя утомленным. Тогда тренировка заканчивается легким бегом приблизительно в течение 30 мин по мягкой траве.

На другой день тренировка состоит из ходьбы и легкого бега в течение 1–2 ч, упражнений, которые лучше всего подходят к его личным потребностям и заканчиваются до того, как появляется усталость».


Не надо спортсмену, который решил использовать в своей подготовке фартлек, бояться трудных условий. Эти условия закаляют спортсмена физически и укрепляют психологически.

Именно так подходил к фартлеку известный тренер Перси Черутти. Сам Черутти так говорил об этом: «Бегуны в Портси готовятся на основе широкого применения фартлека в весьма различных вариантах. Мы, однако, приспособили к нашим австралийским условиям эту известную шведскую систему беговой подготовки и значительно повысили интенсивность и трудность активных отрезков бега. Кроме того, и пассивные отрезки у нас не так велики и не так пассивны, как у европейцев».

Тренеры мира в наше время по-разному интерпретировали фартлек. Он легко служит нескольким задачам тренировки, но мы должны понимать, что фартлек обладает и специфическими свойствами. Он требует такой же тщательной продуманности, как и другие методы тренировки, например интервальная или повторная.

К фартлеку нельзя подходить как к методу тренировки, в котором длительность бега, его интенсивность и количество ускорений проводятся бессистемно. Наоборот, эти элементы необходимо тщательно планировать, исходя из индивидуальных особенностей спортсмена. Фартлек – не беззаботная система «делайте, как хотите», как его иногда понимают. Не следует его понимать и как избавление от напряженной тренировки.

Известный американский тренер К. Догерти говорил: «Фартлек – это скоростная игра, но это такая же игра, как покорение Эвереста или достижение Северного полюса в собачьей упряжке».

Основное качество, которое развивается при использовании этого метода, – общая выносливость. Он способствует также развитию специальной выносливости и быстроты в зависимости от длины отрезков и скорости, включенных в программу тренировки.

В наше время некоторые тренеры в циклических видах спорта на выносливость считают фартлек бессистемным методом тренировки, так как выполняемую спортсменом нагрузку по интенсивности трудно контролировать и оценивать. Однако такой контроль в тренировочной работе методом фартлека в последние годы стал возможным благодаря использованию в тренировке спортсменов монитора сердечного ритма (пульсометра). Запрограммировать так называемый пульсовой фартлек на мониторе сердечного ритма не представляет большого труда. Такая тренировка по методу пульсового фартлека имеет две разновидности:

1. «Легкий» пульсовой фартлек.

2. «Жесткий» пульсовой фартлек.

В чем же состоит основное отличие «легкого» пульсового фартлека от «жесткого»? В «легком» пульсовом фартлеке ЧСС спортсмена должна быть ниже соревновательной зоны (т. е. соревновательного пульса). А вот в «жестком» она обязательно должна достигать своего соревновательного пульса и даже на несколько ударов превосходить его.


В качестве примера приведем варианты нагрузок по методу пульсового фартлека.

Примерная схема тренировки для спортсмена, который использует «легкий» пульсовой фартлек продолжительностью 1 ч 30 мин

Начальный бег (или продвижение) в режиме пульса 110–120 уд./мин – 10 мин.

Бег (продвижение) в пульсовом режиме 130–140 уд./ мин – 15 мин.

Бег (продвижение) в пульсовом режиме 145–150 уд./ мин – 10 мин.

Бег (продвижение) в пульсовом режиме 155–160 уд./ мин – 10 мин.

Бег (продвижение) в пульсовом режиме 135–145 уд./ мин – 10 мин.

Бег (продвижение) в пульсовом режиме 150–155 уд./ мин – 5 мин.

Бег (продвижение) в пульсовом режиме 120–130 уд./ мин – 10 мин.

Примерная схема тренировки для спортсмена, который применяет «жесткий» пульсовой фартлек продолжительностью 1 ч

Начальный бег (или продвижение) в режиме пульса 115–125 уд./мин – 10 мин.

Бег (продвижение) в пульсовом режиме 145–155 уд./ мин – 5 мин.

Бег (продвижение) в пульсовом режиме 115–125 уд./ мин – 10 мин.

Бег (продвижение) в пульсовом режиме 175–180 уд./ мин – 5 мин.

Бег (продвижение) в пульсовом режиме 150–160 уд./ мин – 10 мин.

Бег (продвижение) в пульсовом режиме 130–140 уд./ мин – 5 мин.

Бег (продвижение) в пульсовом режиме 155–160 уд./ мин – 5 мин.

Бег (продвижение) в пульсовом режиме 120–130 уд./ мин – 5 мин.

Таким образом, используя самые различные сочетания пульсовых режимов, можно создать практически бесчисленное множество вариантов. Пульсовой фартлек позволяет варьировать тренировочную нагрузку в занятии, исходя из текущего состояния спортсмена. Основной принцип этого метода – никакого форсирования.

Данная книга представляет собой, по существу, второе, пе­реработанное и исправленное, издание монографии «Локаль­ная выносливость в беге», вышедшей в 1997 году. Накоплен­ные за прошедшие годы материалы и их осмысление сделали возможным распространить выводы и рекомендации на дру­гие циклические виды спорта, а также на спортивные игры и единоборства. При этом сохранен основной предмет исследо­вания - различные стороны повышения производительности нервно-мышечного аппарата спортсменов. Другими словами, в книге рассматриваются проблемы улучшения так называемой локальной (мышечной) выносливости. Данная проблема, на наш взгляд, по-прежнему недостаточно разработана как в оте­чественной, так и зарубежной литературе, несмотря на много­численные работы, посвященные различным сторонам трени­ровки мышц, проводимой в контексте развития силы и сило­вой выносливости спортсменов. Это позволяет надеяться, что второе издание также найдет своего читателя.

Переходя к непосредственному описанию содержания кни­ги, следует рассмотреть вопрос - в каких случаях локальная выносливость (то есть компонент выносливости, связанный непосредственно с нервно-мышечным аппаратом) будет суще­ственным или даже решающим фактором повышения спортив­ного мастерства и почему эта проблема является актуальной?

Непосредственным ограничителем достижения более высо­кого результата при преодолении соревновательной дистанции является наступающее утомление. Поэтому основное, что дол­жно быть достигнуто в результате физической подготовки, это - отдаление момента утомления или повышение к нему устой­чивости организма. Среди факторов, приводящих к утомлению при различной длительности физической работы, выделяют «центральные»:

Утомление корковых центров двигательной зоны ЦНС и снижение частоты импульсации быстрых ДЕ;


недостаточную секрецию стресс-гормонов (катехоламионов) и глюкокортикоидов);

Недостаточную производительность миокарда и систем,
обеспечивающих адекватный региональный и локальный кро-
воток, что может приводить к мышечной гипоксии;

изменения в деятельности вегетативной нервной системы и многих железах внутренней секреции;

а также «периферические»:

Снижение массы фосфагенов;

Увеличение концентрации ионов водорода и лактата (мо­-
лочной кислоты);

Снижение потребления кислорода мышцами;

Снижение концентрации гликогена мышц и др.
Однако при более глубоком рассмотрении обеих групп фак-

торов, можно выдвинуть гипотезу,что большая мощность энер­гетических и сократительных систем, локализованных непосред­ственно в мышцах и определяющих локальную выносливость (ЛВ), позволяет отдалить наступление утомления, а также снизить нагрузки на «центральные факторы», интенсивное функционирование которых также может приводить к утомлению.

Несмотря на очевидную важность исполнительного звена двигательной системы (мышц) для спортивной работоспособ­ности, «центральному фактору», а именно производительнос­ти сердечно-сосудистой системы, «выносливости» централь­ной нервной и гормональной систем и т.п., длительное время относилось решающее значение. В то же время, очевидно, что существуют спортсмены, для которых периферическое звено двигательной системы будет являться лимитирующим факто­ром. Например, на средних и длинных дистанциях к усталости может приводить локальное утомление из-за накопления мо­лочной кислоты в мышцах. Это с равной вероятностью может явиться следствием:

Или недостаточной производительности сердечно-сосу-­
дистой системы и несовершенства региональных и локальных
механизмов перераспределения кровотока, приводящих к тка­-
невой гипоксии;

Или недостаточной аэробной мощности мышц.

Это же справедливо относительно других факторов, кото­рые можно отнести или к «центральному», или «периферичес­кому» звену.

Следовательно, даже в том случае, если сформулированная выше гипотеза окажется неверной, то всегда можно говорить о наличии двух генеральных совокупностях спортсменов:

Первая, у которых основными лимитирующими фактора­ми будут являться «центральные» (производительность ССС,утомление нервных центров, ограничения со стороны гормо­нальной системы и т.п.);

Вторая, у которых лимитирующим звеном являются периферические факторы, локализованные на уровне нервно-мышечного аппарата конечностей (алактатная, гликолитическая, аэробная производительность мышц, сила мышц и т.п.).

Большинство выводов и рекомендаций этой работы будет справедливо для тех спортсменов, у которых нет генетически обусловленных или приобретенных ограничений со стороны управляющих и обеспечивающих мышечную деятельность си­стем организма. Другими словами, мы рассматриваем тот слу­чай, когда в процессе тренировки производительность и совершен­ство функционирования «центральных» систем уже обеспечены или повышаются быстрее, чем производительность морфоструктур, локализованных непосредственно в основных мышцах спортсменов - т. е. в ситуации, когда в процессе длительной специализи­рованной тренировки мышцы становятся лимитирующим фак­тором физической работоспособности.

Как определить, являются ли у данного спортсмена «цент­ральные» системы лимитирующим звеном или нет?

Парадокс заключается в том, что ответа на этот вопрос в настоящее время в литературе нет. В рамках физиологии и био­химии спорта он должным образом не рассматривался. Это положение возникло, на наш взгляд, из-за высочайшего авто­ритета таких корифеев российской науки, как И.М. Сеченова, И.П. Павлова, А.А. Ухтомского, проводивших свои исследо­вания проблем утомления в основном в области физиологии трудовой деятельности и сформулировавших фундаментальные выводы о решающей роли центральной нервной системы, глав­ным образом, для этого вида деятельности. Тем не менее этот вывод был совершенно необосновано распространен и на спорт (т. е. на экстремальную деятельность), где процессы утомле­ния также чаще всего рассматривались в этом ключе (Е.Б. Со­логуб, 1972; Н.В.Зимкин, 1975; Н.Н.Яковлев, 1983; А.С. Со-лодков, 1992).


Другое направление в исследовании утомления в спорте, в частности в циклических локомоциях (Г.Ф. Фольборт, 1956; II.И. Волков, 1969; А.З. Колчинская, 1983; В.Д. Моногаров 1980, 1986; Меленберг, 1990, и др.), признавая существенную роль исполнительного аппарата в развитие утомления, основ­ным фактором утомления мышц считает тканевую гипоксию, которая возникает, однако, «по вине» другой «центральной» системы - сердечно-сосудистой, которая, как предполагает­ся, не способна снабдить мышцы достаточным количеством кислорода в соответствии с их запросом во время интенсивной мышечной работы.

По нашему мнению, в настоящее время есть основания говорить о наличии т.н. функциональной или относительной тканевой гипоксии, которая является совершенно необходи­мым и биологически целесообразным следствием мышечной работы, так как является одним из «ключей» для запуска и регулирования системы энергообеспечения мышечных клеток. Также существуют доводы в пользу того, что гипоксические условия - необходимый фактор для индукции адаптивного синтеза белка, приводящего к повышению окислительного потенциала мышц под воздействием тренировки. Однако и это не более чем гипотеза, так как против нее свидетельствуют не­которые экспериментальные данные, представленные в этой монографии. Поэтому, не отрицая возможности существова­ния тканевой гипоксии у квалифицированных спортсменов при выполнении напряженной мышечной работы, мы счита­ем, что пока нет оснований полагать, что гипоксия является или ограничителем скорости ресинтеза АТФ в процессе мембранного (ды­хательного) фосфорилирования в митохондриях, или причиной утомления мышц.

Следовательно, мышечная гипоксия не является причиной явлений, которые связывают с утомлением. Например, таких, как: продукции и накопления молочной кислоты, повышен­ной скорости расхода углеводных запасов мышц, рекрутирования высокопороговых двигательных единиц (ДЕ) и мн. др.

Хотя, наверное, в конце дистанции может возникнуть си­туация, когда комплекс факторов, связанных с напряженной мышечной деятельностью, повышением температуры и обез­воживанием организма, может ухудшить функциональное со­стояние дыхательной системы, миокарда, систем крови, регу­ляцию сосудистых реакций и т.п. В этом случае ССС будет не­способна поставлять кислород к мышцам в прежнем объеме и теоретически может явиться фактором снижения производи­тельности мышечной работы. Однако, во-первых, как отмече­но выше, все эти явления так или иначе связаны с явлениями утомления в самих мышцах, а во-вторых, будет справедливо толь­ко для случая, когда изменения в мышечных клетках (наруше­ние в деятельности мембран, деградация нуклеотидов, сниже­ние рН и многое другое) еще в большей степени не ухудшит способность мышц утилизировать кислород.

Таким образом, следует согласиться с общим мнением, что проблема утомления в спорте, в частности в циклических ло-комоциях, чрезвычайно сложна и должна решаться биологами на фундаментальном уровне.

Во-первых, определить возможные подходы к такому по­строению тренировки, которое способствовало бы повышению производительности нервно-мышечного аппарата и тем самым «облегчила бы жизнь» «центральным» системам при преодо­лении дистанции, если в ходе дальнейших исследований все же выяснится, что главный источник утомления находится «в

Во-вторых, представить доказательства и эксперименталь­ную проверку того, что средства и методы тренировки в цик­лических локомоциях могут разрабатываться и обосновывать­ся без привлечения гипотезы о тканевой гипоксии как цент­ральном факторе утомления мышц.

Не ставя под сомнение важность «центральных механиз­мов», следует все же констатировать, что многочисленные на­учные исследования и методические разработки, направлен­ные на совершенствование тренировочного процесса в цик­лических видах спорта, в большинстве случаев проводились в контексте «первоочередности», «базовости», «решающей роли» обеспечивающих систем. Проблемы же улучшения локальной


выносливости (ЛВ) изучены существенно хуже и, как прави­ло, в аспекте тренировки силы или т.н. «силовой выносливос­ти». Однако проблема Л В существенно шире и для того, чтобы каждый тренер мог со знанием дела подходить к планирова­нию тренировочного процесса, в котором существенное место занимало бы целенаправленное воздействие на мышечный аппарат, необходимо создать у него целостное представление (модель организма человека и навыки имитационного моделирования), на основании которого можно было бы делать следующие обоснованные суждения:

о значимости мышечных компонентов для выносливости;

о месте такой тренировки в системе подготовки спорт­сменов;

о лимитирующих факторах работоспособности, связанных с мышечной системой;

обоптимальных средствах и методах тренировочных воз­действий на мышечные компоненты, определяющие выносливость;

о вариантах планирования тренировочного занятия, микро, мезо-, макроциклов и многолетней подготовки.

Поэтому авторы взяли на себя смелость рассмотреть, по мере воз- можности, все из перечисленных аспектов физической под­готовки и ее взаимосвязь с техникой локомоций, так как эти две стороны подготовленности не могут рассматриваться изолированно одна от другой.

Книга адресована специалистам и тренерам в циклических видах спорта, направленных на развитие выносливости. Несомненную тренерско-методическую помощь она может оказать как рядовым, так и элитным атлетам, занимающимся циклическими видами спорта на выносливость. Авторские методические находки, нетрадиционные принципы и интегральная система подготовки атлетов были успешно апробированы на бегунах на средние и длинные дистанции. Но они вполне могут быть использованы для развития выносливости и в других циклических видах спорта.

Из серии: Библиотечка тренера

* * *

Приведённый ознакомительный фрагмент книги Инновационная тренировка выносливости в циклических видах спорта (А. С. Ревзон, 2018) предоставлен нашим книжным партнёром - компанией ЛитРес .

© Якимов А. М., Ревзон А. С., 2018

ЯКИМОВ Анатолий Михайлович


РЕВЗОН Август Самсонович


Единомышленники, спортивные педагоги, доценты Московской государственной академии физической культуры Анатолий Михайлович Якимов и Август Самсонович Ревзон – авторы восьми монографий и более 500 научно-методических публикаций по проблемам спорта, физической культуры и валеологии в нашей стране и за рубежом.

За четыре десятилетия совместной работы они подготовили целую плеяду преподавателей-тренеров по разным видам спорта. Большое количество высококвалифицированных легкоатлетов. Некоторые из них стали чемпионами и призерами первенств СССР, России, чемпионатов Европы и мира, победителями международных юношеских соревнований.

Не соревнования делают атлета, а эффективная система тренировки.

Авторы

Как известно, самое большое количество золотых наград разыгрывается на летних и зимних Олимпийских играх в циклических видах спорта на выносливость (бег на средние, длинные и марафонские дистанции, спортивная ходьба, гребля на байдарках и каноэ, академическая гребля, плавание, велосипед, лыжи, коньки, биатлон, шорт-трек).

Некоторые циклические виды спорта имеют более чем вековую историю. Изучая их развитие в научно-методической литературе, авторы сразу же столкнулись с терминологическими разночтениями методов тренировки. Многие термины используются как нечто само собой разумеющееся без четкого определения. А это, безусловно, мешает взаимопониманию специалистов в вопросах методики тренинга.

Вот лишь один пример. Знаменитый тренер Артур Лидьярд заявил, что он не применяет интервального метода в своей тренировке. Но вот как выглядит отрывок из его тренировочной программы: «Бег на 2 мили с быстрыми рывками на 50 ярдов». Совершенно ясно, что одними специалистами такая работа будет рассматриваться как тренировка с использованием интервального метода, а другими – как одна из разновидностей фартлека. Таких примеров можно привести немало.

Существующий многие десятилетия в нашей стране стихийный подход к терминологии методов тренировки среди специалистов по циклическим видам спорта уже давно приводит к путанице, становится барьером на пути дальнейшего развития научных основ методики тренировки и мешает совершенствованию практической деятельности наставников атлетов. Вот почему на основании изучения ряда иностранных источников и отечественной литературы нами была систематизирована вся терминология методов тренинга, применяемая в циклических видах спорта на выносливость.